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Abstract. A major issue with Time of Flight sensors is the presence of
multipath interference. We present Sparse Reflections Analysis (SRA), an
algorithm for removing this interference which has two main advantages.
First, it allows for very general forms of multipath, including interference
with three or more paths, diffuse multipath resulting from Lambertian
surfaces, and combinations thereof. SRA removes this general multipath
with robust techniques based on L1 optimization. Second, due to a novel
dimension reduction, we are able to produce a very fast version of SRA,
which is able to run at frame rate. Experimental results on both synthetic
data with ground truth, as well as real images of challenging scenes,
validate the approach.

1 Introduction

The field of depth sensing has attracted much attention over the last few years.
By providing direct access to three-dimensional information, depth sensors make
many computer vision tasks considerably easier. Examples include object track-
ing and recognition, human activity analysis, hand gesture analysis, and indoor
3D mapping; see the comprehensive review in [11].

Amongst depth sensing technologies, Time of Flight (ToF) imaging has re-
cently shown a lot of promise. A phase modulated ToF sensor works by comput-
ing the time – measured as a phase-shift – it takes a ray of light to bounce off a
surface and return to the sensor. ToF sensors are generally able to achieve very
high accuracy, and – since they use light in the infrared spectrum – to operate
in low illumination settings.

The main issue with ToF sensors is that they suffer frommultipath interference
(henceforth simply “multipath”). Since rays of light are being sent out for each
pixel, and since light can reflect off surfaces in myriad ways, a particular pixel
may receive photons originally sent out for other pixels as well. An illustration is
given in Figure 2. Significant multipath is observed, for example, in scenes with
shiny or specular-like floors.

The key problem is that multipath results in corrupted sensor measurements.
These corruptions do not look like ordinary noise, and can be quite large, re-
sulting in highly inaccurate depth estimates; see Figure 1. Removing the effect
of multipath is therefore a crucial component for ToF systems.
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Fig. 1. Effect of Multipath and its Removal. Multipath is caused by specular floor
materials. (a) IR image. (b) Depth reconstruction using our proposed SRA algorithm,
rendered from a side-on viewpoint; the floor is shown in green, the wall in blue. (c, e)
Results of not correcting for multipath, shown from two viewpoints – above and below
the floor; gross errors are circled in red. (d, f) Output of our proposed SRA algorithm.

1.1 Contributions

Our work addresses two areas in which we improve on the state-of-the-art:

1. More General Multipath. As we will discuss more explicitly in Section 2,
prior work mostly falls into two categories. The first class of algorithms focuses
on the case with diffuse multipath, arising from Lambertian surfaces. The second
class of algorithms focuses on the case of “two-path”multipath, which arises from
specular surfaces.1 But multipath can often be more general than this: specular
multipath with more than two paths is possible, as are combinations of diffuse
and specular multipath.

We formalize the problem of general multipath estimation as an L1 opti-
mization problem; this is the basis for our Sparse Reflections Analysis (SRA)
approach. SRA is posed in such a way as to admit the computation of a global
optimum, which is crucial for the robust cancellation of general multipath even
in the presence of considerable measurement noise.

2. Speed. Prior work targeting diffuse multipath is very slow, typically requiring
a few minutes per frame. By contrast, SRA is able to run at frame-rate, i.e. 30 fps.
This speed would not be possible with a pure L1-based approach; we accelerate
SRA through the use of a novel dimension reduction which allows for a look-up
table based approach. This gives extremely fast performance in practice.

2 Prior Work

Earlier work proposed removing multipath by using additional sensors based
on structured light [7,6], while more recent work has attempted to remove the

1 An exception is the contemporaneous work [1], see Section 2.
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multipath directly from the sensor measurement itself. A summary of this more
recent work is given in the following table.
Paper Multipath

Type
Running Time
Per Frame

Other Constraints

Fuchs [8] Diffuse only 10 minutes
Fuchs et al. [9] Diffuse only 60-150 seconds
Jiménez et al. [13] Diffuse only “Several minutes”
Dorrington et al. [5] Two-path only No information
Godbaz et al. [10] Two-path only*

(see text)
No information Requires 3 or 4 modu-

lation frequencies
Kirmani et al. [15] Two-path only “Implementable

in real-time”
Requires 5 modulation
frequencies

The works of Fuchs [8], Fuchs et al. [9], and Jiménez et al. [13] all model only
diffuse multipath (arising from Lambertian surfaces). [8] estimates the scene by a
point cloud and updates the multipath from all pixels to all pixels by ray tracing.
A single pass approximation is performed, whose complexity is quadratic in the
number of pixels. [9] is a generalization of [8] to a spatially varying, unknown re-
flection coefficient. It requires an iterative solution consisting of multiple passes.
[13] performs a somewhat different iterative optimization of a global function
involving scene reconstruction and ray tracing. As is noted in the table, none of
these methods are close to real-time, requiring anywhere between 1-10 minutes
of processing per frame.

The works of Dorrington et al. [5], Godbaz et al. [10], and Kirmani et al. [15] all
model two-path multipath, arising from specular surfaces. All of these methods
work on a per pixel basis, using either closed form solutions [10,15] or optimiza-
tions [5]. Thus, while they do not report on their running times explicitly, it is
reasonable to expect that they may be close to real-time. [15] requires 5 modu-
lation frequencies; one of the two methods presented in [10], which is based on
a Cauchy distribution approximation to the backscattering of a single return,
requires 4. Several commercial ToF sensors, including the variant of Microsoft’s
Kinect for Windows beta sensor (henceforth “K4W”) on which we perform our
experiments, use only 3 modulation frequencies; thus, these methods are ren-
dered impracticable for such sensors. By contrast, the second method presented
in [10], which uses a more standard delta-function approximation to a single
return, only requires 3 modulation frequencies. Given the additional fact that
this method runs in or near real-time, it is therefore our nearest competitor.

We also note the extremely recent work of Bhandari et al. [1], whose publi-
cation was simultaneous with our submission to ECCV, and which we became
aware of after submission. The formulation of the problem in [1] is quite simi-
lar to the formulation proposed in this paper; however, the solution is different.
This is due to a crucial difference in the setups: while we assume 3 modulation
frequencies, [1] assumes an extremely large number of modulation frequencies –
77, in fact. Such a massively large number of frequencies is infeasible in many
scenarios of interest: for example, in dynamic scenes with fast movement, espe-
cially if there is high pixel resolution. [1] reports an integration time of 47 ms for
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an image with 19,200 pixels; this means that purely based on integration time –
i.e., even if the depth computation is instantaneous – the frame-rate would top
out at 20 fps, and this on a very small image. By contrast, in our case the K4W
integration time is 10 ms for 217,088 pixels – that is, the integration time is
nearly 5 times smaller for 11 times as many pixels. This is possible because only
3 modulation frequencies are used. (We note that all of the competing methods
except for [1] use between 2 and 5 modulation frequencies, for related reasons.)

Given the use of 77 modulation frequencies, [1] successfully solves for a sparse
solution through a greedy approach, Orthogonal Matching Pursuit (OMP).
When restricting to a small number of modulation frequencies – 3, rather than
77 – we found that a greedy optimization approach based on OMP is not ef-
fective. Instead, our method is based on an L1-style global optimization, which
works considerably better in practice. The drawback of L1 is that it tends to be
slow, which is why our novel LUT-based approach is crucial; it allows us to both
gain from the accuracy of L1, while not suffering from its speed disadvantage.

Finally, we note [14] and [12], which use related signal representations.

3 Sparse Reflections Analysis

3.1 The Multipath Representation

The ToF Measurement. We begin by describing the vector which is measured
by a ToF sensor. For a given pixel, the sensor emits infra-red (IR) light modulated
by several frequencies. The light bounces off a surface in the scene, and some
of the light (depending on the reflectivity and orientation of the surface) is
returned to the detector. For each of m modulation frequencies, this light is
then integrated against sinusoids with the same frequency, such that the phase
of the measurement v is based on the distance to the surface:

v ∈ C
m, with vk = xe2πid/λk , k = 1, . . . ,m (1)

where d is the distance to the surface, λk = c/2fk is half of the wavelength
corresponding to the kth modulation frequency fk, and x is a real scalar corre-
sponding to the strength of the signal received. A typical choice for the number
of frequencies is m = 3; this is generally sufficient to prevent aliasing effects.

Multipath. Equation (1) assumes that there is no multipath in the scene. If
there is single extra path (the “two-path” scenario), as shown in Figure 2(a),
then the above equation is modified to

vk = x1e
2πid1/λk + x2e

2πid2/λk (2)

where d1 and d2 are the distances of the two paths, and x1 and x2 give the
strengths of the two paths. If d1 < d2, then d1 is the true distance and d2 is the
multipath component; and the ratio x2/x1 gives the strength of the multipath.
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(a) (b)

Fig. 2. Illustration of Multipath. (a) Two-Path Multipath. The camera (A) and surface
(B) are shown in blue, and light rays in other colours. The correct path is A-B-A; the
second, incorrect path is A-C-B-A. (b) Diffuse Multipath. This results from small
reflections from many nearby points, shown illustratively as four colored paths.

Of course, one can have more general multipath, including: three or more
paths; diffuse plus two-path; and so on. Equation (2) generalizes naturally as

vk =

n∑

j=1

xje
2πidj/λk (3)

where dj is over the relevant interval. In typical examples, we take the range of
object distances to be 20 cm to 450 cm, with increments of 1 cm. Thus, in this
case n = 431. The vector x is referred to as the backscattering.

Equation (3) includes the case of diffuse multipath. An ideal Lambertian sur-
face receives light from a given direction, and reflects infinitesimal amounts in all
directions. In fact, an infinite number of nearby points on the surface reflect in-
finitesimal amounts, and the result is finite. This is shown in Figure 2(b). Diffuse
multipath typically has the form vk = x�e

2πid�/λk +
∑n

j=�+Δ xL(dj−Δ)e2πidj/λk

for some Δ ≥ 0. The shape of xL(·) can be determined by looking at simulations
of diffuse multipath, and turns out to be well approximated by xL(d) ≈ Adαe−βd,
where α and β depend on the geometry of the underlying scene.

We can rewrite Equation (3) in vector-matrix form as v = Φx, where Φ ∈
Cm×n and x ∈ Rn. We further turn complex measurements into real ones, by
stacking the real part on top of the imaginary part, and abuse notation by
denoting the 2m-dimensional result also as v. We do the same with Φ, yielding

Φ ∈ R
2n×m, with Φkj =

{
cos(2πdj/λk) if k = 1, . . . ,m

sin(2πdj/λk−m) if k = m+ 1, . . . , 2m

Then we may still write
v = Φx (4)

but now all quantities are real.

A Characterization of the Backscattering. Let us now characterize the
class of backscatterings x which capture the multipath phenomenon.
Property 1: Non-Negativity The first property is that x is non-negative: x ≥ 0.
That is, there can only be positive or zero returns for any given distance.
Property 2: Compressibility The second property is more interesting. We saw
that the two-path scenario involved an x which was zero at all indices except for
two (corresponding to d1 and d2 in Equation (2)). Such an x is sparse.
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On the other hand, the diffusemultipath, which has the formxL(d) ≈ Adαe−βd,
is not sparse. Rather, its discretized version has the following property: when the
x coefficients are sorted from greatest to smallest, the resulting vector falls off
quickly to 0. This property is referred to as compressibility.

Formally, given a vector x = (x1, . . . , xn), let (xI(1), . . . , xI(n)) denote the

vector sorted in descending order. Then x is compressible if xI(i) ≤ Ri−1/r with
r ≤ 1. That is, the sorted entries of x fall off as a power law.

3.2 The SRA Algorithm

We have represented multipath via the backscattering x, and have further char-
acterized the important properties of the backscattering – non-negativity and
compressibility. We now go on to show how to use this information to cancel the
effects of multipath, and hence find a robust and accurate depth estimate from
the raw ToF measured vector.

Multiplicity of Solutions. We are given v, and we know that a backscattering
x has generated v; i.e. following Equation (4), we have v = Φx. Given that
x ∈ R

n and v ∈ R2m where n � 2m, there are many possible x’s which can
generate v. But our characterization of the backscattering says that x is non-
negative and compressible, which leads to a much more restrictive set of possible
backscatterings.

In fact, due to sensor noise we will not have v = Φx exactly. Rather, we may
expect that v = Φx + η, where η is generally taken to be Gaussian noise, with
zero mean and known covariance matrix C.2

L0 Minimization. Let us suppose, for the moment, that x is sparse rather than
compressible – that is, x has a small number of non-zero entries. The number of
non-zero entries of x is often denoted as it’s 0-norm, i.e. ‖x‖0. In this case, one
would like to solve the following problem:

min
x≥0

‖x‖0 subject to (Φx − v)TC−1(Φx− v) ≤ ε2‖v‖2 (5)

for some parameter ε, which we fix to be 0.05 in our experiments. (Note that we
have indicated the non-negativity of x under the min itself.) That is, we want
the sparsest backscattering x which yields the measurement vector v, up to
some noise tolerance. Unfortunately, the above problem, which is combinatorial
in nature, is NP-hard to solve.

L1 Minimization. However, it turns out that subject to certain conditions on
the matrix Φ, solving the problem

min
x≥0

‖x‖1 subject to (Φx − v)TC−1(Φx− v) ≤ ε2‖v‖2 (6)

will yield a similar solution [3,2,4] to the optimization in (5). Note that the only
difference between the two optimizations is that we have replaced the 0-norm

2 Due to the physics of the sensor, there is often a shot noise component involved. We
will ignore this consideration, though our method can be adapted to handle it.
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with the 1-norm. The key implication is that the optimization in (6) is convex,
and hence may be solved in polynomial time.

In fact, the conditions mentioned in [3,2,4], such as the Restricted Isometry
Property, are generally not satisfied by our matrix Φ. This is due to the redun-
dancy present in nearby columns of Φ, i.e. nearby columns tend to have high in-
ner products with each other. Nevertheless, we can use the optimization in (6),
with the understanding that certain theoretical guarantees given in [3,2,4] do not
hold. Note that this is in the same vein as other computer vision work, such as the
celebrated paper by Wright et al. on robust face recognition [16], which used L1

optimization under conditions which differed from those specified in [3,2,4].
Until now we have been assuming that x is sparse, rather than compressible.

It turns out, however, that even if x is compressible and not sparse, then solving
the L1 optimization in (6) still yields the correct solution [3,2,4].

L1 with L1 Constraints. Although the optimization (6) is convex, it is a
second-order cone program which can be slow to solve in practice. We there-
fore make the following modification. Note that the L2 constraint above may
be written ‖C−1/2(Φx − v)‖2 ≤ ε‖v‖2. We may consider approximating these
constraints by their equivalent L1 constraints, i.e. ‖C−1/2(Φx− v)‖1 ≤ ε‖v‖1. In
this case, the resulting optimization becomes

min
x≥0

‖x‖1 subject to ‖C−1/2(Φx − v)‖1 ≤ ε‖v‖1 (7)

The advantage of this formulation over (6) is that it can be recast as a linear
program. As such, it can be solved considerably faster. To perform the conver-
sion, first notice that since x ≥ 0, ‖x‖1 =

∑n
i=1 xi = 1Tx. Second, note that the

constraint ‖z‖1 ≤ γ for z ∈ R� can be converted into the set of linear constraints
Q�z ≤ γ1, where Q� is a 2� × � matrix, whose rows consist of all elements of the
set {−1,+1}�. While this might be prohibitive for � large, in our case � = 2m,
and we generally have m = 3; this leads to 64 extra constraints, much fewer than
the number of non-negativity constraints. This yields the linear program

min
x≥0

1Tx subject to Ax ≤ b

where A = Q2mC−1/2Φ and b = Q2mC−1/2v + ε‖v‖11.
ComputingDepth fromBackscattering. The various optimization problems
we have just described yield the backscattering x. Of course, in the end our goal
is an estimate of the depth; we now explain how to extract the depth from x.

The main path must have the shortest distance; this results from the geometry
of the imaging process. Thus, we have simply that the depth corresponds to the
first non-zero index of x, i.e. the index i1(x) ≡ argmini{i : xi > 0}. Then the
depth is just δ = di1(x). In practice, due to numerical issues there will be many
small non-zero elements of x. Thus, we take i1(x) ≡ argmini{i : xi > cmaxi′ xi′}
for some small c; typically, we use c = 0.01.

If we have a reasonably accurate noise model, we can be more sophisticated. For
each peak of the backscattering x, we can compute the probability that the peak
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is generated by noise rather than signal. Then the probability that the first peak
is the true return is just one minus the probability that it is generated by noise;
the probability that the second peak is the true return is the probability that the
first peak is generated by noise times one minus the probability that the second
peak is generated by noise; and so on. If no return has probability greater than a
threshold (e.g. 0.9), we can “invalidate” the pixel – that is, declare that we do not
know the true depth. We will make use of this kind of invalidation in Section 5.

4 Fast Computation

SRA allows us to compute the backscattering x from a sensor measurement v;
from the backscattering, one can compute the depth. The issue that now arises is
related to the speed of the computation. Solving the optimization in (7) typically
requires about 50 milliseconds per instance on a standard CPU. Given that a
ToF image may consist of several hundred thousand pixels, this yields on the
order at least an hour per frame. To achieve a frame rate of 30 Hz, therefore, a
radically different approach is needed. The method we now describe allows for
SRA to run at frame rate on ordinary hardware, for images of size 424× 512.

Dimension Reduction: Motivation. Real-time computation is often aided
by performing pre-computation in the form of a look-up table (LUT). If we
construct a LUT directly on the measurement vector v, then the table will be 2m-
dimensional, as this is the dimensionality of v. It is easy to see that multiplying
v by a scalar does not change the results of any of the SRA optimizations, except
to scale x by the same scalar. Thus, one can easily normalize v so that its L2

norm (or L1 norm) is equal to 1, yielding a reduction of a single dimension. The
resulting table will then be (2m− 1)-dimensional.

Our goal is a further reduction of a single dimension, to (2m− 2) dimensions.
Recall that the size of an LUT is exponential in its dimension; thus, the reduction
of two dimensions reduces the total memory for the LUT by a factor of L2, where
each dimension has been discretized into L cells. This reduction makes the LUT
approach feasible in practice.

A Useful Transformation. Let us return to the complex formulation of the
problem; this will make the ensuing discussion easier, though it is not strictly
necessary. Let us define the m×m complex matrix Fs,Δ by

Fs,Δ = s · diag(e−2πiΔ/λ1 , . . . , e−2πiΔ/λm)

where Δ ∈ R; s > 0 is any real positive scalar; and diag() denotes the diagonal
matrix with the specified elements on the diagonal. Then we have the following
theorem, from which we can derive our dimension reduction.

Theorem 1. Let x∗ be the solution to the optimization (6), and let x∗
s,Δ be the

solution to (6) with Fs,Δv replacing v and Fs,ΔΦ replacing Φ. Suppose that the
covariance C is diagonal, and satisfies Cjj = Cj+m,j+m. Then x∗

s,Δ = x∗.

The proof is included in the supplementary material. The implication of The-
orem 1 is that multiplying both the measurement v and the matrix Φ by the
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matrix Fs,Δ does not change the backscattering (assuming the theorem’s con-
ditions on the covariance matrix hold, which is a reasonable model of sensor
noise). Of course, the corresponding range of distances has been shifted by by
−Δ, so in extracting the depth from x∗

s,Δ, one must add on Δ afterwards.
Before going on, we note that Theorem 1 applies to optimization (6) rather

than (7), which we use in practice. However, as (7) is a reasonable approximation
to (6), we proceed to use Theorem 1 to construct our dimension reduction.

The Canonical Transformation. The Canonical Transformation is derived
from Fs,Δ by a particular choice of s and Δ. Let k ∈ {1, . . . ,m} be a specific
frequency index; then Canonical Transformation of v, ρ(k)(v), is given by

ρ(k)(v) ≡ Fs,Δv with s = ‖v‖−1, Δ = λk(∠vk/2π)

where ∠vk denotes the phase of vk, taken to lie in [0, 2π). It is easy to see that
ρ(k) has the following property. The kth element of ρ(k)(v) is real, i.e. has 0 phase.
Furthermore, the kth element of ρ(k)(v) may be found from the other elements

of ρ(k)(v) by ρ
(k)
k (v) =

(
1−∑

k′ �=k |ρ(k)k′ (v)|2
)1/2

.

In other words, in the Canonical Transformation, one of the elements is re-
dundant, in that it is completely determined by the other elements. Hence, this
element can be removed without losing information. Of course, the component
is complex, meaning that we have removed two real dimensions, hence enabling
the promised dimension reduction from 2m to 2m− 2. A LUT can be built on
the remaining 2m− 2 dimensions, simply by discretizing over these dimensions.

Note that having transformed v by Fs,Δ (with s and Δ given by the Canonical
Transformation), we must also apply Fs,Δ to Φ in order to use Theorem 1. In
fact, this is straightforward: this transformation simply “shifts” the columns of
Φ. So if before they represented distances in the range [Dmin, Dmax], they now
represent distances in the range [Dmin − Δ,Dmax − Δ]. Rather than actually
do the shifting, we simply enlarge this range. Note that the minimal value that
Δ can take on is 0, while the maximal value is λk; thus, after the Canonical
Transformation the potential distances can now fall between Dmin − λk and
Dmax. Thus, the matrix Φ is now enlarged to have columns corresponding to
distances in the range [Dmin − λk, Dmax]. A natural method for choosing k
is to keep the above range as small as possible, and hence to choose the k
corresponding to the smallest half-wavelength λk.

5 Experiments

5.1 Running Time

As one of the main claims of this paper is a fast algorithm, we begin by presenting
the speed of the algorithm. We have benchmarked SRA on images of size 424×
512, which are the standard for Microsoft’s Kinect for Windows beta sensor
(“K4W”). The code is run on an Intel Core i7 processor, with 4 cores, 8 logical
processors, and a clockspeed of 2.4 GHz. The code runs in 31.2 milliseconds per
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Fig. 3. Three-Path Simulation. Left: true backscattering. Following 4 plots: SRA re-
construction of the backscattering, for SNR= ∞, 20, 10, 5. See discussion in the text.

SNR SRA Godbaz ML

∞ 0.0 15.0 111.0

20 1.9 114.7 111.0

10 3.7 119.3 111.0

5 8.1 109.2 109.0

SNR SRA Godbaz ML

∞ 0.0 8.4 29.0

20 2.1 108.4 29.0

10 4.1 117.4 29.0

5 8.6 111.9 30.0

SNR SRA Godbaz ML

∞ 0.0 8.0 29.0

20 8.7 91.7 29.0

10 17.4 86.2 29.0

5 31.7 76.4 31.0

Fig. 4. Three-Path Simulation. Each column shows the true backscattering (top), and
the median absolute error in cm of three algorithms under various noise levels (bottom).
The best algorithm is indicated in bold. See discussion in the text.

frame, which is real-time given a frame-rate of 30 fps. Note that our code is
largely unoptimized Matlab (the only optimization we make is to use the CPU’s
8 logical processors for parallelization); the speed comes from the LUT-based
approach. It is to be expected that optimized C code would be even faster.

5.2 General Multipath: Examples

Specular Three Path. We begin by motivating the relevance of general multi-
path. Specular multipath with three or more paths results naturally from simple
scene geometries. Suppose that we have the geometry shown in Figure 2(a),
where the object (B) lies on a Lambertian surface and the scene element (C) is
taken to be purely specular. Then it can be shown that by varying the position
and normal of the scene element, we can generate any relative amplitudes we
wish between the direct (A-B-A) and interfering (A-C-B-A) paths, as well as any
pair of path distances; please see the supplementary material for more details.
Generating three (or more) paths then becomes straightforward, by adding an
extra (or multiple extra) specular surfaces to the scene.

Figure 3 shows an example of three path specular interference. The leftmost
plot shows the true backscattering, corresponding to object distances of 100,
200, and 300 cm, with amplitudes in the ratio 1:2:3. That is, the multipath is
2 + 3 = 5 times stronger than the initial return. Moving from left to right, the
following four plots show the backscattering computed by the SRA algorithm
under different levels of noise: SNR= ∞, 20, 10, 5. Note that the backscattering
extracted is exactly correct for the case of SNR= ∞, and remains fairly close to
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Fig. 5. Combined Diffuse and Specular Multipath. Left: true backscattering. Middle:
detail of the backscattering, showing the diffuse part. Right: Absolute error in cm.

the true backscattering as the noise level increases. Indeed, for the highest noise
level of SNR= 5, the peaks have moved to 97, 200, and 306 cm (movements of
-3, 0, and 6 cm resp.), which yields an error of 3 cm in depth estimation. (Note
the amplitudes have changed as well, moving less than 20% in all cases.)

We now move to a more quantitative comparison of SRA with other alterna-
tives in the case of three paths. As our aim is to show the need to model more
general multipath, we run against two strong two-path alternatives: the algo-
rithm of Godbaz et al. [10] (our most natural competitor, for reasons described
in Section 2) and the maximum likelihood (ML) two-path solution. Note that
the ML solution is not a practical algorithm, as it requires a slow, exhaustive
examination of all pairs of paths; but we include it as it represents the best possi-
ble two path solution. Figure 4 shows three separate configurations; the top row
shows the true backscatterings, while the tables below show the performance of
SRA vs. the two alternatives. The performance is given by the median absolute
error of the depth; as we are adding noise, we average over 1,000 samples.

We note that SRA outperforms the two alternatives, and does so by a wide
margin once even a small amount of noise is added. In the first example, the
accuracies of SRA are very high, staying under 4 cm for SNR levels up to 10; the
second example is similar. The third case has been chosen to be more difficult for
SRA: the multipath is 6 times stronger than the original path, and the second
and third returns are fairly closely spaced. SRA’s errors here are higher, though
still considerably lower than the alternatives (except in the case of SNR = 5,
where performance is similar to ML). In all three cases, Godbaz gives reasonable
results in the noiseless case, but fails once even a small amount of noise (SNR
= 20) is added. ML is much more resistant to noise, but does not give very high
accuracy in any of the examples, regardless of noise level.

Combined Diffuse and Specular Multipath. We now show an example
which leads to a combination of diffuse and specular multipath. The geometry
is again simple, and consists of an object and a single plane; both object and
plane have both specular and diffuse reflectivity. The backscattering, which we
generate by use of our own light-transport simulator, is shown in Figure 5; note
the fact that the backscattering is no longer sparse (but is still compressible).

The depth estimate errors are shown in Figure 5. The method of Godbaz
generates fairly large errors. ML is considerably better: it turns out that there
is a reasonably good two path approximation to the measurement v produced
by this backscattering. SRA produces the lowest error: not surprisingly, allowing
for a more complex backscattering – as SRA does – leads to the best result.
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Fig. 6. Two-Path Simulation: Mean Absolute Error (cm). Left: Godbaz. Middle: SRA,
with the same scale as Godbaz, i.e. [0, 100] . Right: SRA, with errors rescaled to [0,8].

5.3 Comprehensive Two-Path Evaluation

Setup. We have shown the ability of SRA to deal with general multipath.
However, standard two-path interference is a very important case, and we would
like to show SRA’s capabilities in this regime. We challenge SRA in two ways: by
simulating high multipath, up to a factor of 5 times as high as the direct return;
and by simulating high noise regimes. We again compare against Godbaz et
al. [10], our most natural competitor (for reasons described in Section 2).

In particular, we simulate returns of the form vk = x1e
2πid1/λk +x2e

2πid2/λk +
ηk; the noise ηk has independent real and imaginary components, and is taken
to be Gaussian with variance σ2 for each component. There are two critical
parameters: (1) Multipath Strength is defined as x2/x1, and takes on values in
the set {0.6, 1.1, 1.7, 2.2, 2.8, 3.3, 3.9. 4.4, 5.0}. (2) SNR is defined as x1/

√
6σ,

since there are 6 independent noise components to the measurement. It takes on
values in the set {∞, 25.5, 12.7, 8.5, 6.4, 5.1, 4.2, 3.6, 3.2}.

We also allow d1 to vary over values between 20 cm and 380 cm, and the
return separation d2 − d1 to vary between 40 cm and 250 cm; and each instance
is generated with many noise vectors. In total, we generate 261,000 examples.

We visualize the results in Figure 6, in which we show the mean absolute
error (MAE) of the depth estimates as a function of multipath strength and
SNR. Each square corresponds to a (multipath strength, SNR) pair; we average
over all examples falling into the square to compute the MAE.

Discussion. In general, SRA’s behavior is as we would imagine: as multipath
strength increases, MAE increases; likewise, as SNR decreases, MAE increases.

There are two notable facts about the results. First, the MAE is quite small
for “realistic” values of multipath strength and SNR. Focus on the upper left
rectangle of Figure 6 consisting of SNRs from ∞ to 8.5 and multipath strengths
from 0.6 to 2.2; note that these are still quite challenging values. In this regime,
the MAE is low: it is less than 2.6 cm in all squares, with an average of 1.4 cm.

Second, SRA’s performance degrades in a graceful way: the MAE increases
gradually in both dimensions. In fact, even when the multipath is 5 times
stronger than the true return and the SNR has a low value of 3.2, the MAE
is 7.9 cm, which is a very reasonable error in such circumstances.

It is interesting to compare SRA’s MAE with that of Godbaz et al. [10], re-
calling that Godbaz’s algorithm was designed with two-path multipath in mind.
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Fig. 7. “Geometric”. (a) IR image. (b) SRA depth estimate. (c,e) Optimal depth esti-
mates without multipath correction; errors are circled in red. (d,f) SRA depth.

Godbaz gives good results when there is no noise: the MAE is nearly 0. Once
even a small amount of noise is added in, however, Godbaz’s performance drops
significantly. For example, with SNR = 25.5, the errors range from 30.8 cm (MP
Strength = 0.6) to 69.7 cm (MP Strength = 5). Performance worsens significantly
as SNR decreases.

5.4 Real Images

We now discuss the results of running SRA on three different challenging im-
ages. The images are collected using a variant of the K4W sensor, which has
m = 3 modulation frequencies – 15, 80, and 120 MHz – and a resolution of
424 × 512. The images have been placed in the publicly available repository
http://research.microsoft.com/sparsereflections/; researchers should
also be able to acquire similar images on their own, using the K4W sensor.

Unfortunately, we are not able to compare with any of the real-time competing
methods due to their incompatibility with the K4W imaging setup. Specifically,
Godbaz et al. [10] and Dorrington et al. [5] require a very particular relation
between the modulation frequencies, which is not satisfied by K4W’s modulation
frequencies. Kirmani et al. [15] requires 5 modulation frequencies, while a second
method described in [10] requires 4; K4W uses only 3 modulation frequencies.
Thus, for comparison purposes in this section, we run SRA against a variant
of SRA which looks for the optimal single path which best describes the sensor
measurement, which we call “Opt-Single”.

“Strips” Image. See Figure 1. This image is a simple scene – a floor and a wall;
however, the floor is composed of strips of different materials, each of which has
different reflectance properties.This canbe seen clearly in the IR image inFigure 1.

The more specular materials tend to lead to very high multipath: a path which
bounces off the wall, and from there to the floor, will generally have strength
higher than the direct return from the floor. This is due to the fact that the
direct path is nearly parallel to the floor, leading to a weak direct return.

http://research.microsoft.com/sparsereflections/
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Fig. 8. “Living Room”. (a) IR image. (b) SRA depth estimate. (c) Optimal depth esti-
mate without multipath correction; errors are circled in red. (d) SRA depth estimate.

Results of the depth reconstruction are shown in Figure 1. To see the effect of
multipath removal, we compare SRA’s depth estimate to Opt-Single. In Figure
1, one can see details of the scene which show the effect of “specular floor” multi-
path: the wall is effectively reflected into the floor, leading to grossly inaccurate
estimates for the floor. By contrast, SRA reconstructs a very clean floor, which
is seen to be almost completely flat, the exceptions being a few small depressions
of less than 4 cm.

Note in Figure 1 that SRA invalidates a number of pixels at the top right part
of the image, corresponding to a patterned wall-hanging; this is due to the low
reflectivity of this part of the scene, leading to very noisy measurements.

“Geometric” Image. See Figure 7. This image consists of a similar set-up
to “Strips”, but with various geometric objects inserted. These objects include
many sharp angles, as well as several thin structures. SRA reconstructs the scene
quite well, see Figure 7. Again, note the scene details in Figure 7, which show the
performance of SRA vs. Opt-Single. Much of the surface of the rectangular table
is lost without accounting for multipath, whereas SRA is able to reconstruct it.
And the corner where the wall joins the floor is lost – actually reflected into the
floor – without accounting for multipath, whereas SRA recovers it.

“Living Room” Image. See Figure 8. This image consists of a couch as well
as a number of objects inserted. As in “Strips”, there is a strip of reflective
material on the floor; Opt-Single has trouble accounting for this strip, as can
be seen in Figure 8. Perhaps more interestingly, the thin structure which is the
wheel at the base of the swivel chair is largely reconstructed by SRA, whereas
large portions of it, on both the right and left sides, are lost by Opt-Single.

6 Conclusions

We have presented the SRA algorithm for removing multipath interference from
ToF images. We have seen that the method is both general, dealing with many
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types of multipath, and fast. SRA has been experimentally validated on both
synthetic data as well as challenging real images, demonstrating its superior
performance.
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