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Abstract

We address the problem of localizing homology classes,

namely, finding the cycle representing a given class with the

most concise geometric measure. We focus on the volume

measure, that is, the 1-norm of a cycle. Two main results

are presented. First, we prove the problem is NP-hard

to approximate within any constant factor. Second, we

prove that for homology of dimension two or higher, the

problem is NP-hard to approximate even when the Betti

number is O(1). A side effect is the inapproximability

of the problem of computing the nonbounding cycle with

the smallest volume, and computing cycles representing a

homology basis with the minimal total volume. We also

discuss other geometric measures (diameter and radius) and

show their disadvantages in homology localization. Our

work is restricted to homology over the Z2 field.

1 Introduction

The problem of computing the topological features of
a space has recently drawn much attention from re-
searchers in various fields, such as high-dimensional data
analysis [4], graphics [14], networks [11] and computa-
tional biology [10]. Topological features are often prefer-
able to purely geometric features, as they are more qual-
itative and global, and tend to be more robust. If the
goal is to characterize a space, therefore, features which
incorporate topology seem to be good candidates.

While topological features are global, the need
to “localize” them has been raised in a variety of
applications. In graphics and manifold learning, one
wants to detect and remove topological noise such as
the small holes and handles that are introduced in
data acquisition; this is often done in the context of
traditional signal-noise analysis, and finite sampling
of continuous spaces [17, 25, 21]. In the area of
sensor networks, holes of the coverage region, caused
by physical constraints, should be accurately identified
and described so as to produce as robust a network as
possible [16, 22]. In the study of shape, 3D shapes
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may be enriched with properties such as curvatures
associated with tangent vectors at each tangent plane.
The new augmented shape lives in high dimension,
whose topological features can be localized and reveal
geometric features of the original shape [3].

In this paper, we will address the localization prob-
lem, namely, finding the smallest representative cycle
of a homology class with regard to a given natural cri-
terion of the size of a cycle. The criterion should be
deliberately chosen so that the corresponding smallest
cycle is concise in not only mathematics but also intu-
ition. Such a cycle is a “well-localized” representative
cycle of its class. See Figure 1 for examples. In a disk
with three holes (Figure 1(a)), cycles z1 and z2 are well-
localized; z3 is not. In a 2-handled torus (Figure 1(b)),
the concise cycle z1 is a better representative (than z2)
of its class, and describes the small handle better.

(a)

(b)

Figure 1: Motivating examples for localization.

We use volume, the number of simplices of a cycle,
as the criterion to minimize. For a 1-dimensional
(resp. 2-dimensional) cycle, the volume is its length
(resp. area).

We have two main results. First, we prove that



localizing a given class with the minimal volume cycle
is NP-hard to approximate within any constant factor.
The proof is a strict reduction from the nearest code-
word problem. We prove the inapproximability for ho-
mology of any dimension.

Second, we prove that for homology of dimension
two or higher, computing the nonbounding cycle with
the smallest volume is NP-hard to approximate within
any constant factor. This is true even when the Betti
number is fixed. This result leads to the inapproxima-
bility of two other problems concerning homology of two
dimensions or higher, namely,

• localizing a given class with the minimal volume
cycle, when Betti number is fixed, and

• computing a homology cycle basis with the minimal
total volume.

We conclude the paper with a short discussion
of other minimization criteria, including diameter and
radius.

Throughout this paper, the topological features we
use are homology classes over Z2 field, due to their ease
of computation. (Thus, all the additions are mod 2
additions.)

2 Preliminaries

2.1 Homology Groups. We briefly describe some
background knowledge from algebraic topology. Please
refer to [20] for more details. For simplicity, we
restrict our discussion to the combinatorial framework
of simplicial homology over Z2 field.

Given a simplicial complex K, a d-chain is a formal
sum of d-simplices, c =

∑
σ∈K aσσ, aσ ∈ Z2. All

the d-chains form the group of d-chains, Cd(K). The
boundary of a d-chain is the sum of the (d− 1)-faces of
all the d-simplices in the chain. The boundary operator
∂d : Cd(K) → Cd−1(K) is a group homomorphism.

A d-cycle is a d-chain without boundary. 1 The set
of d-cycles forms a subgroup of the chain group, which is
the kernel of the boundary operator, Zd(K) = ker(∂d).
A d-boundary is the boundary of a (d+1)-chain. The set
of d-boundaries forms a group, which is the image of the
boundary operator, Bd(K) = img(∂d+1). It is not hard
to see that a d-boundary is also a d-cycle. Therefore,
Bd(K) is a subgroup of Zd(K). A d-cycle which is not a
d-boundary, z ∈ Zd(K)\Bd(K), is a nonbounding cycle.
In our case, the coefficients belong to a field, namely Z2;
when this is the case, the groups of chains, boundaries

1For those unfamiliar with homology, we emphasize that a 1-
cycle is different from the cycle defined in graph theory. For the

former definition, a 1-cycle can be a disjoint union of arbitrarily
many 1-cycles. But this is not true for the latter definition.

and cycles are all vector spaces. Note that this is not
true when the homology is over a ring which is not a
field, such as Z.

The d-dimensional homology group is defined as the
quotient group Hd(K) = Zd(K)/Bd(K). An element in
Hd(K) is a homology class, which is a coset of Bd(K),
[z] = z + Bd(K) for some d-cycle z ∈ Zd(K). If z is a d-
boundary, [z] = Bd(K) is the identity element of Hd(K).
Otherwise, when z is a nonbounding cycle, [z] is a
nontrivial homology class and z is called a representative
cycle of [z]. Cycles in the same homology class are
homologous to each other, which means their difference
is a boundary.

The dimension of the homology group, which is
referred to as the Betti number,

βd = dim(Hd(K)) = dim(Zd(K))− dim(Bd(K)).

As the dimension of the chain group is upper bounded
by the cardinality of K, n, so are the dimensions of
Bd(K), Zd(K) and Hd(K). The Betti number can be
computed with a reduction algorithm based on row
and column operations of the boundary matrices [20].
Various reduction algorithms have been devised for
different purposes.

A homology basis is a set of βd classes generating the
group Hd(K). We call a set of βd nonbounding cycles
representing a homology basis a homology cycle basis.
Any d-cycle can be written as the linear combination of
a homology cycle basis and boundaries.

Note that since the field is Z2, the set of d-chains is
in one-to-one correspondence with the set of subsets of
the set of d-simplices. A d-chain corresponds to a nd-
dimensional vector, whose nonzero entries correspond
to the included d-simplices. Here nd is the number
of d-simplices in K. Computing the boundary of a d-
chain corresponds to multiplying the chain vector with
a boundary matrix [b1, ..., bnd

], whose column vectors
are boundaries of d-simplices in K. By slightly abusing
notation, we call the boundary matrix ∂d.

We call a subset of simplices of a given simplicial
complex a subcomplex, if this subset itself is a simpli-
cial complex. We denote the d-skeleton of K as the
subcomplex consisting of all the d-simplices and their
faces. The following notation will prove convenient. We
say that a d-chain c ∈ Cd(K) is carried by a subcom-
plex K0 when all the d-simplices of c belong to K0. We
denote vert(K) as the set of vertices of the simplicial
complex K, vert(c) as that of the chain c. Denote |K|
as the underlying space of K, |c| as that of the chain c.

Replacing simplices by their continuous images in
a given topological space gives singular homology. The
simplicial homology of a simplicial complex is naturally
isomorphic to the singular homology of its geometric re-



alization. This implies, in particular, that the simplicial
homology of a space does not depend on the particular
simplicial complex chosen for the space. In figures of
this paper, we often ignore the simplicial complex and
only show the continuous images of chains.

2.2 Terminology from Coding Theory. We focus
on binary linear codes and thus only use matrices over
the Z2 field. For consistency, we switch the roles of the
row and column indices from the standard definition.
Please refer to [19] for details.

Given an m × k (m > k) full rank matrix A, we
define a linear code as the k-dimensional column space
of A, namely, span(A). Each element of the linear code
is called a codeword. This matrix is called the generator
matrix as it is a basis of the linear code. By slightly
abusing notation, we call a full rank matrix A⊥ the
parity-check matrix if its nullspace is the linear code.
Given a generator matrix A, A⊥ may be computed in
polynomial time by a Gauss-Jordan elimination of the
transpose of A. Its dimension is (m− k)×m.

2.3 The Hardness of Approximability and
Strict Reductions. We will prove several optimiza-
tion problems are NP-hard to approximate within any
constant factor. Relevant definitions will be presented
in this section. Please see [2] for more details. For ease
of exposition, we only discuss minimization problems.
The definitions can be extended to maximization prob-
lems easily.

An NP optimization problem Π is a three-tuple
(I, Sol, m) in which I is the set of instances. For
each instance I ∈ I, Sol(I) denotes the set of feasible
solutions of I, and the objective function, m(I, S),
produces a value for each feasible solution S ∈ Sol(I).
Any instance can be recognized in time polynomial in its
size, card(I). It is also polynomial to verify whether any
given S is a feasible solution, or evaluate the objective
function m.

For an instance I and one of its feasible solutions,
S ∈ Sol(I), we define the performance ratio, ρΠ(I, S),
as the ratio of the value m(I, S) (assume m(·, ·) ≥ 0)
over the value of the optimal solution, formally,

ρΠ(I, S) =
m(I, S)

m(I, S∗(I))

where S∗(I) is the optimal solution of I. The quality of
a polynomial approximation algorithm, A, is measured
by the approximation ratio ρA(I) = ρΠ(I, A(I)). For
minimization problems, therefore, the approximation
ratio is in [1,∞).

An NP optimization problem Π belongs to the
class APX if there exists a polynomial approximation

algorithm A and a value r ∈ Q such that given any
instance I of Π, ρA(I) ≤ r. In such case, A is called an
r-approximation algorithm of Π.

Given two problems Π1 and Π2, we reduce Π1 to Π2

by providing two polynomial time computable functions
f and g, such that f transforms any instance I1 in Π1

into an instance I2 = f(I1) in Π2, and g transforms any
feasible solution of this I2, S2, into a feasible solution of
the initial instance I1, g(I1, S2).

We say the reduction is strict (Π1 ≤S Π2) if in
addition, for any instance I1 ∈ IΠ1 and any feasible
solution of f(I1), S2 ∈ SolΠ2(f(I1)), the performance
ratios satisfy

(2.1) ρΠ2(f(I1), S2) ≥ ρΠ1(I1, g(I1, S2)).

Given such a strict reduction, the optimal solution of
f(I1) would lead to an optimal solution of I1, and
furthermore, any feasible solution of f(I1) would lead to
a feasible solution of I1 with better performance ratio.
It is straightforward to see that an r-approximation
algorithm of Π2 would lead to an r-approximation
algorithm of Π1. Therefore, strict reduction preserves
the membership of APX. The following lemma will be
useful for our inapproximability proof.

Lemma 2.1. If Π1 ≤S Π2 and Π1 /∈ APX, then Π2 /∈
APX.

In other words, if Π1 is strictly reducible to Π2 and
cannot be approximated within any constant factor,
neither can Π2.

3 Related Work

Researchers have been interested in localizing 1-
dimensional homology classes with the minimal volume
cycle, namely, the shortest representative cycle. Us-
ing Dijkstra’s shortest path algorithm, Erickson and
Whittlesey [15] computed the shortest homology basis,
namely, the 1-dimensional homology cycle basis whose
elements have the minimal total volume. The authors
also showed how the idea carries over to finding the op-
timal generators of the first fundamental group, though
the proof is considerably harder in this case.

This polynomial algorithm cannot localize an arbi-
trarily given class. To fill this void, Chambers et al. [6]
devised an algorithm to localize a given class. Their
method precomputes the shortest representative cycles
of all 2β1 − 1 nontrivial classes, and thus, is exponential
in the 1-dimensional Betti number, β1.

It has been demonstrated that when β1 = Θ(n),
localizing a given 1-dimensional class with its shortest
cycle is NP-hard, both in the cases that the topological
space is a manifold with boundary [7] and without
boundary [6].



Due to the difficulties in localizing with the minimal
volume criterion, researchers have focused on other cri-
teria or heuristics. Some have computed 1-dimensional
cycles closely related to handles which are much more
meaningful in low dimensional applications such as
graphics and CAD. Guskov and Wood [17, 25] detected
small handles of a 2-manifold using the Reeb graph of
the manifold. Given a 2-manifold embedded in S3, Dey
et al. [12] computed these handle-related cycles by com-
puting the deformation retractions of the two compo-
nents of the embedding space bounded by the given 2-
manifold. A recent extension [13] improved their result
based on geometric heuristics and persistent homology.
Their work facilitates handle detection in real applica-
tions.

All of the aforementioned works are restricted to 1-
dimensional homology. Zomorodian and Carlsson [26]
took a different approach to solving the localization
problem for general dimension. Their method starts
with a topological space and a cover, which is a set of
spaces whose union contains the original space. They
computed a homology basis and localized classes of
it, using tools from algebraic topology and persistent
homology. However, both the quality of the localization
and the complexity of the algorithm depend strongly on
the choice of cover; there is, as yet, no suggestion of a
canonical cover.

Chen and Freedman [9] presented a polynomial time
algorithm for localizing a homology class of general di-
mension with the minimal radius cycle. Their algorithm
can also compute a homology cycle basis with the min-
imal total radius. The cycle with the minimal radius,
however, may be quite complicated in terms of geome-
try. Please see Section 8 for detailed discussion.

In terms of homology over other fields, the problem
of finding the minimal volume representative does not
have a direct analogy. A cycle with real coefficients can
have arbitrarily small but nonzero volume. A minimal
volume cycle with integer coefficients is not all that
different in conception from the corresponding cycle
over the Z2 field, but may be more complicated due
to the torsion.

Chambers et al. [5] addressed the localization prob-
lem of 1-dimensional homology over other fields by for-
mulating a maximization problem. They view a 1-chain
as a flow of the 1-skeleton of a simplicial complex. The
localization problem is formalized as finding a maxi-
mal flow homologous to a given flow under a given con-
straint of the edge capacities. Two 1-chains are ho-
mologous if their difference is a 1-boundary. Their al-
gorithm is exponential in β1 for real coefficients and
O(β7

1n log2 n log2 C) for integer coefficients, where C is
the total sum of all the edge capacities.

4 Problem Formalization and a List of Results

Given an objective function defined on all the d-cycles,
cost : Zd(K) → R, we formalize the localization problem
as a combinatorial optimization problem.

Problem 4.1. (Localizing Homology)
INPUT: a simplicial complex K with size n, a d-
dimensional nontrivial homology class h = [z0]
OUTPUT: a cycle z ∈ h
MINIMIZE: cost(z)

In this paper, we use volume as the objective function.

Definition 4.1. (Volume) The volume of a cycle is
the number of its simplices, vol(z) = card(z).

For example, the volume of a 1-cycle, a 2-cycle and a
3-cycle are the numbers of their edges, triangles and
tetrahedra, respectively. The cycle with the smallest
volume, denoted as zv, agrees intuitively with the notion
of a “well-localized” cycle. For convenience, we denote
LocHomVol as the problem of localizing a homology
class with its minimal volume cycle, zv.

More generally, we can extend the volume definition
to be the sum of the weights assigned to simplices of the
cycle, given an arbitrary weight function, w : K → R,
defined on all the simplices of K, formally,

vol’(z) =
∑
σ∈z

w(σ).

Computing zv using this general volume definition is at
least as hard as using Definition 4.1, which is in fact a
special case (when w(σ) = 1, ∀σ ∈ K). Therefore, we
will only treat the unweighted volume function.

There are two other variations, which are supposed
to be easier than LocHomVol , namely, computing
a nonbounding cycle with the minimal volume, and
computing a homology cycle basis with the minimal
total volume, formally,

Problem 4.2. (Min-Vol Nonbounding Cycle)
INPUT: a simplicial complex K with size n
OUTPUT: a nonbounding d-cycle z
MINIMIZE: vol(z)

Problem 4.3. (Min-Vol Basis)
INPUT: a simplicial complex K with size n
OUTPUT: a homology cycle basis {z1, z2, · · · , zβd

}
MINIMIZE:

∑βd

i=1 vol(zi)

For short, we name these two problems MinVolNBCyc
and MinVolBasis, respectively.

There are some existing hardness results, when the
homology classes in question are 1-dimensional.



LocHomVol , β1 = Θ(n) NP-hard
LocHomVol , β1 = O(1) polynomial

2-manifolds
LocHomVol , β1 = O(1) unknown

general complexes
MinVolNBCyc polynomial
MinVolBasis polynomial

Table 1: Existing results for 1-dimensional homology.

• When β1 = Θ(n), LocHomVol has been proven
to be NP-hard by polynomial reductions from a
special case of MAX-2SAT [7] and MIN-CUT with
negative edge weights [6].

• Chambers et al. [6] provided a polynomial algo-
rithm for LocHomVol when β1 is fixed. The al-
gorithm computes the shortest representative cycle
for each of the 2β1−1 nontrivial classes. This work
is restricted to triangulations of 2-manifolds with
or without boundaries. The problem remains open
when the input is a general simplicial complex.

• Erickson and Whittlesey [15] devised a polynomial
algorithm for MinVolBasis, even when β1 = Θ(n).
This work is restricted to triangulations of 2-
manifolds. A natural extension of the algorithm
(together with [9]) can compute MinVolNBCyc and
MinVolBasis in polynomial time when the input is
a general simplicial complex.

We summarize these results in Table 1.
All these existing results are about 1-dimensional

homology. In this paper, we will study whether
LocHomVol is difficult in general dimension, and more
importantly, how difficult it is.

The existing results suggest that the localization
problem might be easier if we assume fixed Betti num-
ber, or if we compute MinVolNBCyc or MinVolBasis in-
stead. Therefore, we would also like to find out how dif-
ficult these problems could be. We prove the inapprox-
imability of a special case of MinVolNBCyc, namely,
when βd = 1, which in turn shows that all the problems
we are interested in are NP-hard to approximate when
the homology is 2-dimensional or higher.

For the sake of clarity, we list all the new results as
follows.

• When the homology in question is 1-dimensional or
higher and the Betti number is Θ(n), it is NP-hard
to approximate LocHomVol within any constant
factor (Theorem 5.1).

• When the homology in question is 2-dimensional or

higher, we prove that MinVolNBCyc is NP-hard to
approximate within any constant factor (Theorem
6.1). So do LocHomVol with βd = O(1) and
MinVolBasis (Corollary 6.1).

• A polynomial time algorithm to compute the min-
imal volume nonbounding cycle for a special case:
when the pertinent space is embedded in RN and
the pertinent homology is (N − 1)-dimensional.

5 LocHomVol is NP-hard to approximate
within any constant factor

We prove by a strict reduction from the nearest code-
word problem (NearestCodeword), which cannot be ap-
proximated within any constant factor [1]. Problems
used in previous reductions to LocHomVol [7, 6] have
constant approximation ratios, and thus cannot be used
for our proof.

Problem 5.1. (Nearest Codeword Problem)
INPUT: an m × k generator matrix A over Z2 and a
vector y0 ∈ Zm

2 \ span(A)
OUTPUT: a vector y ∈ y0 + span(A)
MINIMIZE: the Hamming weight of y

Lemma 5.1. For 1-dimensional homology, LocHomVol
cannot be approximated within any constant factor.

Proof. We prove by a strict reduction from
NearestCodeword, namely,

NearestCodeword ≤S LocHomVol .

Given an instance of NearestCodeword, namely, a
generator matrix A and a vector y0, we first construct a
cell complex, T , whose 2-dimensional boundary matrix
is A. T has m 1-cells and k 2-cells corresponding to
the m rows and k columns of A. Each 1-cell is a 1-
dimensional cycle. Each 2-cell is a pipe with multiple
openings. Please note that we are abusing notation
when we call T a cell complex, as these cells may not
be homeomorphic to closed balls. See Figure 2 for an
example with a 4× 2 generator matrix

A =


1 0
1 1
0 1
0 1

 .

As each 1-chain of T is a 1-cycle, it is not hard to
see that NearestCodeword is identical to the problem of
computing the minimal volume representative cycle of
a given 1-dimensional class of T , [y0]. However, this
problem, denoted as LocHomVol-T, is different from
LocHomVol , whose input is a simplicial complex which



Figure 2: The constructed cell complex, T . Two
2-cells (pipes) share four 1-cells (thickened circles),
corresponding to two columns and four rows of A.

is supposed to be a triangulation of a topological space.
Next, we subdivide T into a simplicial complex K. With
this construction, we will strictly reduce LocHomVol-T
to LocHomVol.

We first triangulate each 1-cell of T into t1 edges,
with t1 fixed and small. For convenience, we denote
the triangulation of all 1-cells of T as K1, which is a
subcomplex of K. There is a one-to-one correspondence
between 1-cycles of T and 1-cycles of K1, denoted as φ.
For any 1-cycle of T , y, and its corresponding 1-cycle of
K1, φ(y), the ratio of their volumes is 1 : t1.

Next, we triangulate the interior of 2-cells of T
(pipes) while keeping K1 intact. The triangulation is
fine enough so that for any 1-cycle of K, z ∈ [z0], we
can compute in polynomial time a cycle z′ carried by
K1, which is homologous to z and has a smaller or
equal volume. More details of the triangulation and
generating z′ from z can be found in Appendix A.

Our construction provides a polynomial transfor-
mation of every instance of LocHomVol-T, (T, y0), into
an instance of LocHomVol , (K, z0 = φ(y0)). For
any such instance, and any feasible solution z ∈ [z0],
we transform z into z′ and then into a solution of
LocHomVol-T, φ−1(z′). For convenience, we denote this
solution g(z). Lastly, we prove this reduction is strict.
First, the optimal solution of LocHomVol , zv, is a cycle
of K1, whose corresponding solution of LocHomVol-T,
g(zv) = φ−1(zv) is the optimal solution. The ratio of
their volumes is vol(zv) : vol(g(zv)) = t1 : 1. Second, for
any feasible solution z, the volume of its corresponding
solution in LocHomVol-T is

vol(g(z)) = vol(φ−1(z′)) =
1
t1

vol(z′) ≤ 1
t1

vol(z),

and therefore,
vol(z)
vol(zv)

≥ vol(g(z))
vol(g(zv))

.

This guarantees Inequality (2.1), and thus the strictness
of the reduction. ¤

Lemma 5.1 is about 1-dimensional homology. We
extend the result to homology of any higher dimension.

Theorem 5.1. For any d ≥ 1, LocHomVol for d-
dimensional homology cannot be approximated within
any constant factor.

Proof. We show that when d ≥ 2, LocHomVol for
(d − 1)-dimensional homology can be strictly reduced
to LocHomVol for d-dimensional homology, namely,
LocHomVold−1 ≤S LocHomVold. Together with
Lemma 5.1, the theorem is proved.

Next, we explain the reduction. Given a simplicial
complex of LocHomVold−1, we build a suspension of
it, namely, two cones of the complex glued together at
their base [24]. There is a one-to-one correspondence
between the (d − 1)-dimensional cycle group of the
original complex and the d-dimensional cycle group of
the new complex. This correspondence also works for
the boundary groups. Since the volume of each (d− 1)-
cycle is 1/2 of the volume of its corresponding d-cycle,
this is a strict reduction. ¤

Restriction to a manifold. A natural question
is whether the localization problem could be made
easier if we restrict the input to be the triangulation
of a manifold. We could then modify Lemma 5.1 and
its proof to accommodate this manifold assumption.
Specifically, we can embed the cell complex T in RN .
By thickening the underlying space of T and taking its
boundary as a new topological space, we get an (N−1)-
manifold (one less dimension than the ambient space).
This manifold can be triangulated in a similar way as
we triangulate T . This leads to the inapproximability of
LocHomVol for 1-dimensional homology when the input
is the triangulation of an (N − 1)-manifold.

A classical result suggests that we can embed the
2-dimensional cell complex T in R5. By using an analog
of book embedding an arbitrary graph in R3 [23], we
can embed T in R4. Therefore, we prove the problem
is NP-hard to approximate for 1-dimensional homology
when the input is the triangulation of a 3-manifold.
This raises the open question that whether localizing
a 1-dimensional class of a 2-manifold is NP-hard to
approximate (it has already been proven to be NP-hard
to compute).

A similar argument can be applied to other prob-
lems we will discuss in the next section, except that
in Lemma 6.1, the relevant homology is 2-dimensional,
the cell complex T is 3-dimensional and the manifold is
5-dimensional.

6 MinVolNBCyc is NP-hard to approximate
within any constant factor

In the previous section, the simplicial complex we
constructed for LocHomVol has Θ(n) Betti number. It
has been revealed for 1-dimensional homology that



1. MinVolNBCyc and MinVolBasis can be solved in
polynomial time, and

2. LocHomVol with β1 = O(1) can be solved in
polynomial time when the input is the triangulation
of a 2-manifold, with or without boundary.

This raises the question of whether these three problems
are hard for homology of dimension two or higher.
Our main result in this section is the inapproximability
proof of a special case of MinVolNBCyc (Theorem 6.1).
This trivially leads to the inapproximability of all the
aforementioned problems (Corollary 6.1).

Lemma 6.1. For 2-dimensional homology, even when
β2 = 1, MinVolNBCyc is NP-hard to approximate
within any constant factor.

Proof. We prove by a strict reduction from
NearestCodeword, namely,

NearestCodeword ≤S MinVolNBCyc .

Given an instance of NearestCodeword, we consider
the generator matrix C = [A, y0] and its parity-check
matrix C⊥ (the dimension is (m−k−1)×m). Following
a scheme similar to Lemma 5.1 (illustrated in Figure
2), we construct a cell complex T2 using C⊥ as the 2-
dimensional boundary matrix. There is a one-to-one
correspondence between the 2-dimensional cycle group
of T2 and nullspace(C⊥) = span(C). This cycle group
has rank(A) + 1 = k + 1 and is spanned by the column
vectors of A and y0.

Next, for each column vector of A, we seal the
corresponding 2-cycle in T2 with a 3-cell. T2 is the
2-skeleton of the augmented complex, denoted as T .
The one and only nontrivial 2-dimensional homology
class of T is identical to the coset y0 + span(A).
Finding the smallest volume nonbounding 2-cycle of
T , denoted as MinVolNBCyc-T, is equal to finding
the minimal Hamming weight vector in this coset and
thus equal to solving NearestCodeword. It suffices to
show that MinVolNBCyc-T can be strictly reduced to
MinVolNBCyc, by subdividing T .

In order to triangulate T into a simplicial complex
K, we first subdivide the 2-skeleton, T2, into a simplicial
complex K2, in which all 2-cells are triangulated into
the same number of triangles (say, t2). There is a one-
to-one correspondence between the 2-dimensional cycle
groups Z2(K2) and Z2(T2) = Z2(T ). The volume of each
2-cycle of K2 is t2 times that of its corresponding cycle.

Next, while keeping K2 intact, we triangulate in-
terior of the 3-cells as finely as possible so that for
any nonbounding 2-cycle of K, z, we can always find
in polynomial time a nonbounding 2-cycle of K2, z′,

which is homologous to z. (This is similar to the trian-
gulation strategy in Lemma 5.1, which is explained in
Appendix A.) Due to the one-to-one correspondence be-
tween Z2(K2) and Z2(T ) and the t2:1 ratio of their vol-
umes, we have a strict reduction from MinVolNBCyc-T
to MinVolNBCyc. ¤

Remark 6.1. Whereas β2 and β3 of the constructed
K are 1 and 0 respectively, the 1-dimensional Betti
number, β1, could be linear in the size of K. How-
ever, we can remedy this by computing an arbitrary 1-
dimensional homology cycle basis and seal all its ele-
ments with additional triangles. It is not hard to see
that this will not influence the reduction. This way, we
prove the inapproximability for complexes with bounded
Betti numbers of all dimensions.

Similar to Theorem 5.1, we can extend the result
to any higher dimension by a suspension-building-based
strict reduction of any MinVolNBCyc problem for (d−
1)-dimensional homology to that of the d-dimensional
homology.

Theorem 6.1. Even when the relevant Betti number
is 1, MinVolNBCyc is NP-hard to approximate within
any constant factor for homology of dimension two or
higher.

So far the inapproximability proof is for
MinVolNBCyc with βd = 1. This trivially leads
to the inapproximability of the general MinVolNBCyc.
Furthermore, we extend the inapproximability to the
other two problems.

Corollary 6.1. For homology of dimension two or
higher, the following problems are NP-hard to approxi-
mate within any constant factor:

1. MinVolBasis;

2. LocHomVol with fixed Betti number.

Proof. We show that the special case MinVolNBCyc can
be computed in polynomial time from the output of the
other two problems. This leads to the inapproximabil-
ity.

Given the output of MinVolBasis, the homology
cycle basis with the minimal total volume, the minimal
volume nonbounding cycle is in this basis.

For LocHomVol with fixed Betti number, we enu-
merate all nontrivial classes and find their minimal vol-
ume representatives. The minimal volume nonbounding
cycle is one of those representatives. ¤



7 A Polynomial Special Case

There is, however, a special case in which MinVolNBCyc
can be computed in polynomial time, even with linear
Betti number: when K is an N -dimensional complex
embedded in RN and the pertinent nonbounding cycle
is (N − 1)-dimensional. In this section, we provide a
polynomial algorithm, inspired by [18, 6]. It is not
hard to generalize this algorithm to MinVolBasis and
LocHomVol.

We add new N -cells to K to get a new complex
K ′, whose underlying space is RN . Each new cell
covers one component of RN\|K|. There are βN−1 + 1
new cells, one of which covers the infinity component.
The boundary of each new cell is one component of
the (N − 1)-dimensional boundary of K. Here we are
abusing notation again as the new cells may not be
homeomorphic to closed balls.

We use the MIN-CUT algorithm on the dual graphs
to solve the problem. The dual graph of K, G, is a
subgraph of the dual of K ′, G′. Denote vertex sets of
G and G′ as V and V ′, respectively. The set of new
vertices V ′\V is dual to the set of new N -cells. See
Figure 3 for an example when N = 2.

We call a cycle minimal if none of its non-empty
subsets is a cycle. We denote C(G′, G) as the set of
minimal edge cuts (cuts whose subsets are not cuts) of
G′ which cut G′ into two partitions each of which con-
tains at least one vertex of V ′\V . There is a one-to-one
correspondence between the set of minimal nonbound-
ing (N − 1)-cycles of K and the set of cuts C(G′, G).
The volume of each cycle is equal to the cardinality of its
corresponding cut. As the nonbounding (N − 1)-cycle
with the smallest volume has to be one of the mini-
mal cycles, it can be computed by computing the cut in
C(G′, G) with the smallest cardinality.

To compute the minimal cardinality cut in
C(G′, G), we enumerate all pairs of vertices, (v1, v2) ∈
(V ′\V )× (V ′\V ). Compute the minimal (v1-v2)-cut for
each pair. The one with the smallest cardinality is the
desired one.

Since the cardinality of V ′\V is βN−1 + 1, the
complexity of this algorithm is O(β2

N−1f(n)) where n
is the size of the simplicial complex and f(n) is the
complexity of the MIN-CUT algorithm. Using MIN-
CUT algorithms whose complexity is O(n2 log n), the
whole algorithm has complexity O(β2

N−1n
2 log n).

Remark 7.1. The idea can be carried over to the case
of a weighted volume function, but only if the weight
function is non-negative.

Figure 3: A 2-dimensional simplicial complex embedded
in R2. The dual graph G and G′ are drawn in solid lines
and vertices. Their difference, G′\G, includes vertices
p1, p2, p3 and their incident edges.

8 Localizing with Other Geometric Criteria

Since localizing a class with the minimal volume is
extremely difficult, we could resort to other geometric
criteria as the objective function for optimization. In
this section, we discuss two such criteria, diameter and
radius of a cycle. We briefly explain the definitions, and
then show that these criteria suffer from a “wiggling
problem”. We end by quoting relevant results which
have been proven in our previous work [8, 7].

Given a simplicial complex K and nonnegative
lengths defined on each of its edges, the discrete geodesic
distance between any two vertices, d : vert(K) ×
vert(K) → R, is defined as the length of the shortest
path in the 1-skeleton of K. Given p ∈ vert(K),
r ≥ 0, the discrete geodesic ball, Br

p, centered at p with
radius r, is the maximal subcomplex whose vertices’
discrete geodesic distances from p are no greater than
r. The diameter of a cycle, z, is the maximal pairwise
discrete geodesic distance of the vertices in vert(z),
maxp,q∈vert(z) d(p, q). The radius of z is the smallest
radius of discrete geodesic balls carrying z.

We denote zd (resp. zr) as the representative cycle
of a given class with the minimal diameter (resp. ra-
dius). These cycles seem to be good substitutes for the
minimal volume representative cycle, zv. However, both
zd and zr suffer from a “wiggling problem” and are not
geometrically concise.

For example, in an annulus (Figure 4(a)), zr wiggles
freely inside the geodesic ball (centered at p, dark grey
area) carrying it. In Figure 4(b), we show a closed 3-
dimensional ball with a bone shape void in the middle.
The minimal diameter 2-cycle, zd, representing the only
nontrivial 2-dimensional class, can freely wiggle near the
middle of the bone, as the diameter is determined by the
distance between the two ends of the bone. The reason



for this phenomenon is in finding the minimal diameter
cycle, we minimize the maximum of all pairwise geodesic
distances. It is not hard to see that zd does not wiggle
only if for any v ∈ vert(zd), its longest distance from
other vertices in zd is close to diam(zd).

For completeness, we quote previous results con-
cerning the computation of zd and zr.

• zd is NP-hard to compute;

• zr can be computed in polynomial time;

• diam(zr) ≤ 2 diam(zd). This is a tight bound.

(a) The cycle with the mini-

mal radius, zr.

(b) A cross-section of a 3-

ball with a bone shape void,
and the 2-dimensional zd.

Figure 4: Wiggling cases.

9 Discussion

In this paper, we have proved inapproximability of
localization with minimal volume. An open question
is whether we can use other discrete geodesic distance
related measures for localization, besides diameter and
radius, which do not suffer from the wiggling problem.
For example, can we use the normalized sum of the
pairwise geodesic distances? Furthermore, what if we
restrict the geodesic distance to be within the cycle
(rather than the entire complex)? It is conceivable
that these distance related measures might be easier to
compute, as localization with the volume measure has
been shown to be extremely hard.

For the volume measure, there are still unsolved
questions when the relevant homology is 1-dimensional.
For example, is there a polynomial-time algorithm for
LocHomVol with a fixed Betti number? Is LocHomVol
with β1 = Θ(n) NP-hard to approximate when the
input is a 2-manifold?
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Appendix

A Details of Subdividing T in Lemma 5.1

We explain details of triangulating T finely, so that
for any cycle of K, z ∈ [z0], we can compute in
polynomial time a cycle z′ ∈ [z0], which is carried by
the subcomplex K1, with the volume vol(z′) ≤ vol(z).

For convenience, we introduce some notations. We
call a 1-chain c a simple path if card(c) = card(vert(c))+
1, and there is a non-repeating sequence of vert(c),
(v1, v2, . . . , vk), such that any two consecutive vertices
in the sequence is connected by an edge of c. 2 The first
and last vertices are the end vertices. If we identify the
two end vertices, that is, v1 = vk, the chain c is called
a simple cycle. In this case, card(c) = card(vert(c)).
We extend the definition of homologous to chains. Two
chains are homologous to each other if their difference
is a boundary.

Recall that we triangulate each 1-cell of T into t1
edges. The triangulation of the 1-skeleton of T is a
subcomplex K1. Recall m is the number of 1-cells of
T . For each 2-cell of T , we triangulate it as fine as
possible while keeping K1 intact. See Figure 5 for the
triangulation of a 2-cell σ whose boundary has 4 1-cells.

Given this triangulation, the polynomial time trans-

2This definition is consistent with the definition in graph
theory.

(a) The 2-cell σ is cut into a polygon along
the red curves.

(b) A fine triangulation of the polygon. For sim-
plicity, we only draw 1/4 of the triangulation.

Figure 5: The triangulation of a 2-cell of T whose
boundary has 4 1-cells, when t1 = 4 and m = 5.

formation of z into z′ can be achieved as follows. We
partition z into simple cycles and simple paths by find-
ing all repeating vertices and vertices of K1. Each sim-
ple cycle has no vertex from K1. Each simple path has
no vertices from K1 except for the two end vertices.
Next, we deal with these simple cycles and simple paths
one by one. There are three cases. Recall that φ maps
a chain of T to its subdivision.

1. Any simple cycle or simple path is carried by the
triangulation of one 2-cell of T , σ. A simple cycle is
homologous to a cycle carried by the triangulation
of ∂σ, φ(∂σ) ⊆ K1. The latter cycle has a smaller
or equal volume. See Figure 6(a) for an example.

2. For a simple path whose both end vertices are
from the triangulation of a same 1-cell τ ∈ ∂σ,
it is homologous to a path connecting the two
end vertices within φ(τ) plus cycles which are
triangulations of other cells of ∂σ. The latter chain
has a smaller or equal volume. See Figure 6(b).

3. Suppose it is a simple path connecting vertices from
the triangulations of two different 1-cells (Figure
6(c)). We triangulate the 2-cell σ as fine as possible



so that any such path has a volume of at least mt1.
In such case, we just let z′ be the input z0, whose
volume is no greater than mt1, and thus no greater
than vol(z). The fine triangulation in Figure 5
achieves this objective when t1 = 4 and m = 5.

z′ is computed after we transform all simple paths
and simple cycles into homologous chains and cycles
carried by K1, or we let z′ = z0 if Case 3 happens.

(a) Case 1: a simple cycle (red) is homol-
ogous to a 1-cycle (blue) carried by K1.

Note the latter cycle has two components.

(b) Case 2: a simple path (red) whose
end vertices are from the triangulation of

a same 1-cell is homologous to a 1-chain
(blue) carried by K1.

(c) Case 3: a simple path (red) connect-

ing vertices from the triangulation of two

1-cells is at least mt1 long.

Figure 6: Different cases for generating z′.


