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Abstract

Given a source object and a target object, we con-
sider the problem of transferring the “color scheme” of
the source to the target, while at the same time maintain-
ing the target’s original look and feel. This is a challenging
problem due to the fact that the source and target may each
consist of multiple colors, each of which comes in multi-
ple shades. We propose a two stage solution to this prob-
lem. (1) A discrete color flow is computed from the target
histogram to the source histogram; this flow is computed
as the solution to a convex optimization problem, whose
global optimum may be found. (2) The discrete flow is
turned into a continuous color transformation, which can
be written as a convex sum of Stretch-Minimizing Structure-
Preserving (SMSP) transformations. These SMSP transfor-
mations, which are computed based on the color flow, are
affine transformations with desirable theoretical properties.
The effectiveness of this two stage algorithm is validated in
a series of experiments.

1. Introduction
Recent years have witnessed an interest in the develop-

ment of automatic tools for image editing. Such tools, most
commonly used by graphic artists, have found their way into
popular software suites such as Adobe Photoshop. In this
paper, we look at one such tool, which allows the transfer
of colors from one object to another.

The problem we wish to solve is as follows. Given a
source object and a target object, we would like to transfer
the “color scheme” of the source to the target, while at the
same time maintaining the target’s original look and feel.
From the algorithmic point of view, our goal is to com-
pute an appropriate color transformation which achieves
this transfer. This is a challenging problem due to the fact
that the source and target may each consist of multiple col-
ors, each of which comes in multiple shades.

We propose a two stage algorithm to solve this problem.
In the first stage, a discrete color flow is computed from
the target histogram to the source histogram. This flow is
computed as the solution to a convex optimization problem,
which is an extension of the classic Transportation Problem
[3, 8]; the extension relaxes the conservation constraints,
and imposes a smoothness term on the flow. Since the prob-
lem is convex, the globally optimal flow may be found.

In the second stage, the discrete color flow is turned into
a continuous color transformation. The continuity of the
transformation is necessary, as a discrete transformation –

based only on the color flow – will not capture the multiple
shades of each color, and leads to strong quantization arti-
facts. Hence, a discrete transformation has difficulty cap-
turing the look and feel of the target; a continuous trans-
formation, by contrast, is suited precisely to this purpose.
We write our continuous transformation as a convex sum
of Stretch-Minimizing Structure-Preserving (SMSP) trans-
formations. These SMSP transformations, which are com-
puted based on the color flow, are affine transformations
with desirable theoretical properties.

1.1. Related Work
Many recoloring papers, such as [13], focus on the prob-

lem of transferring color to gray scale images and vice
versa. In [14], the authors propose a recoloring method
that is based on alpha matting and compositing, and a color
transformation function which is single-valued and mono-
tonically increasing in the destination pixel intensity do-
main. In [5], the authors propose a natural colorization ap-
proach which is based on the assumption that pixels having
similar intensities should have similar color. In this paper,
the input image (or sequence) is gray scale and the out-
put image is a colored image. In [2], the authors present
a method for recoloring a destination image according to
the color scheme from the source image. The image is first
segmented into groups of pixels with similar color; then,
the color palette for an image is constructed by choosing
most typical colors from the above segments. Color trans-
fer is computed by matching the segment areas between the
source and destination segments using a Euclidean metric.
In [9], the authors apply a linear transformation that scales
the mean and the variance of the target area according to
the ones from the source area. In [12], the authors use
the approach in [9] along with a simple segmentation tech-
nique to perform recoloring operations. In [7], the authors
present generic machinery for transforming probability dis-
tributions, which can be applied to the problem to the prob-
lem of color transfer.

This paper greatly extends prior work by the authors [4].
The algorithm presented in [4] was entirely discrete, with
the attendant quantization artifacts. Further, a simpler ver-
sion of the Transportation Problem, without the smoothness
extension, was used.

1.2. Outline
The remainder of the paper is organized as follows. Sec-

tion 2 presents the computation of the discrete color flow.
The problem is cast as an optimization, and properties of
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the optimal solution are proven. Section 3 defines and com-
putes the Stretch-Minimizing Structure-Preserving (SMSP)
transformation. These transformations are quite general,
and of interest independent of the color transfer application.
Section 4 shows how to use the discrete color flow to com-
pute appropriate SMSP transformations; consequently, the
overall color transform may be written as a convex sum of
SMSPs. Section 5 presents results, showing the effective-
ness of the method.

2. Color Flow: The Convex Formulation
In this section, we compute the color flow, which is a

key step in the development of our color transformation.
The color flow describes, in discrete terms, how target col-
ors may be mapped to source colors. This discrete color
flow will then be used in Section 4 to derive a continuous
transformation from target colors to source colors.

2.1. Problem Setup
Let us assume that our target and source are character-

ized by probability distributions. For simplicity, we take
these distributions to be discrete, that is histograms. We
may thus represent the target and source distributions com-
pactly as a list of histogram bins with non-zero probabil-
ity, along with their probabilities. For example, the target
distribution is written as {(ti, pti)}

nt
i=1, where ti is a target

bin-center, pti is the corresponding probability mass for that
bin, and nt is the number of such bins. Likewise, the source
distribution will be written as {(sj , psj)}

ns
j=1.

Where do these distributions come from? We assume
that in the first stage of the algorithm, the user selects a
small region of both the target and source from the im-
age (or images) in question. Based on these selections, a
semi-automatic segmentation scheme segments the target
and source regions, from which these distributions can then
be computed. Details of the segmentation scheme are given
in Section 5.

2.2. The Transportation Problem
Now, given the target and source distributions, we would

like to find a way to map from the target to the source.
Our solution to this problem is to use the classic Trans-
portation Problem to compute the transformation between
the two distributions. The Transportation Problem, which
is familiar to the vision community through the work on the
Earth Mover’s Distance (EMD) [10], is formulated as fol-
lows [3, 8]. Let the flow between the target and source dis-
tributions be given by fij , where the indices i and j range
over the (non-empty) bins of the target and source distri-
butions, respectively. That is, fij can be thought of as the
part of target bin i which is mapped to source bin j. A
key quantity is then the color distance between target and
source colors1, which we denote by D(t, s). The color dis-
tance conveys how similar a target color is to a source color.
While we may sometimes take the color distance to be the

1In the work on the Earth Mover’s Distance, D is generally called the
ground distance.

ordinary L2 distance between RGB vectors, we may also
prefer more interesting functions. For instance, if we wish
to remove shadows, then we might factor out the brightness
of the colors; this “Brightness-Invariant Distance” may be
written

D(t, s) =
∥∥∥∥ t

‖t‖1
− s

‖s‖1

∥∥∥∥
2

where we have assumed an RGB representation of color (for
both target and source).2 More examples of color distances
will be given in Section 5.

Taking the color distance as given for the moment, we
would like to solve the following optimization:

min
{fij}

nt∑
i=1

ns∑
j=1

fijD(ti, sj)

subject to
ns∑
j=1

fij = pti i = 1, . . . , nt (CT’)

nt∑
i=1

fij = psj j = 1, . . . , ns (CS’)

fij ≥ 0 (NN)

The goal of the objective function is to map the target
colors ti to corresponding source colors sj in such a way
that the color distance between them is as small as possi-
ble. However, we cannot reasonably expect that each bin
of the target distribution maps neatly to exactly one bin of
the source distribution. Thus, we allow target bins to be
spread over several source bins, subject to the two equality
constraints (CT’) and (CS’) which ensure “conservation of
probability” for both the target and source distributions.

2.3. Relaxing the Conservation Constraints
A key aspect of the Transportation Problem formulation

is the conservation of probability, as embodied in the equal-
ity constraints. In fact, in our case requiring conservation of
probability is too extreme as it assumes that the source and
target regions contain exactly the same amounts of “compa-
rable colors.” To understand this issue, consider the follow-
ing example. Suppose that the source image is 50% light
red and 50% dark red, and the target image is 40% light
blue and 60% dark blue. Assume further that we would
like to map target pixels with a given brightness to source
pixels with a given brightness, independent of color; and
that the light blue and light red pixels have the same bright-
ness, as do the respective dark colors. (The corresponding
color distance will then be the “Brightness Distance,” i.e.
D(t, s) = |‖t‖1−‖s‖1|, where t and s are RGB representa-
tions of color.) In this case, inspection shows that by solving
the Transportation Problem, the conservation of probability
constraints will require coloring part (10%) of the dark blue
section of the target image in light red, which is obviously
not desirable.

2Note that it is possible to choose D to be asymmetric, in that the target
and source are treated differently, so that D is not a true distance. See
Section 5 for an example of such a D.



As a result, we would like to relax the conservation of
probability constraints. To do so, we replace the equality
constraints (CT’) and (CS’) in the original Transportation
Problem by the following inequality constraints:

pti/η ≤
ns∑
j=1

fij ≤ ηpti i = 1, . . . , nt (CT)

psj/η ≤
nt∑
i=1

fij ≤ ηpsj j = 1, . . . , ns (CS)

and add in the extra equality constraint∑
i,j

fij = 1 (TP)

while retaining the constraint (NN). Here η ≥ 1 is a pa-
rameter which describes the slackness of the conservation
constraints. Note that the constraint (TP) which was en-
forced implicitly in the original Transportation Problem, is
now made explicit.

The role of η is elucidated in the following theorem:

Theorem 1 Consider the optimization problem with re-
laxed conservation constraints. Modify (CT) to read pti/η+
(1 − 1/η)ε ≤

∑ns

j=1 fij ≤ ηpti, for some ε > 0 (ε can be
chosen arbitrarily small). Then:

• if η = 1, the problem reduces to the ordinary trans-
portation problem; and

• if η → ∞, then for a fixed i, the only j for which
fij > 0 is j = arg minj′ D(ti, sj′).

Proof: Omitted due to space constraints. �
The theorem thus states that the optimization problem

with relaxed conservation constraints interpolates between
two cases: the Transportation Problem (η = 1), and the case
in which each target color ti flows entirely to the source
color sj which is closest to it, according to the color dis-
tance D(ti, sj) (η =∞). Mostly we will use an intermedi-
ate setting, such as η = 2.

2.4. The Smoothed Relaxed Transportation Prob-
lem

The modified optimization problem is still missing one
critical property. Namely, we would like the flows to be
similar for similar target colors. This is important, as the
final (continuous) color transformation will be based on the
flow, and we would like to ensure that this transformation
is sufficiently smooth. Thus, we would like to encourage
smoothness in the flow itself.

We therefore modify the objective function to be

nt∑
i=1

ns∑
j=1

fijD(ti, sj) + γ
∑
i6=i′

ωi,i′

∥∥∥∥fi,·pti − fi′,·
pti′

∥∥∥∥
p

(OBJ)

where fi,· denotes the vector [fi,1 . . . fi,ns
]T , ‖ · ‖p is the

p-norm, ωi,i′ is a measure of the similarity of ti and ti′ ,

and γ is a weighting factor between the transportation and
smoothness terms. For pairs i and i′ with similar target col-
ors, i.e. for which ωi,i′ is large, we demand that the normal-
ized flows fi,·/pti and fi′,·/pti′ are similar. The reason for
the normalization will become clearer in Section 4, and can
be explained briefly here as follows. We will consider the
normalized flow as a kind of probability distribution over
source colors j corresponding a particular target color i; it
is these probability distributions that will be important for
the final transformation, so it is these distributions that we
wish to be smooth. Note that in practice, we use a similar-
ity measure of the form ωi,i′ = (d(ti, ti′) + ε)−α, where
d measures the distance between target colors, and ε and α
are small positive parameters.

Finally, we have the Smoothed Relaxed Tranportation
Problem:

min
fij

(OBJ) subject to (CT), (CS), (NN), (TP)

If the norm p in (OBJ) satisfies p ≥ 1, this problem is a
convex program, which may be solved efficiently. Cases of
interest are p = 1, 2, and∞. We take p = 2 in our imple-
mentation, which can be solved as a quadratic program.

3. Intermezzo: Stretch-Minimizing Structure-
Preserving (SMSP) Transformations

In this section, we take a brief pause from the color trans-
fer problem to develop the idea of the Stretch-Minimizing
Structure-Preserving (SMSP) transformations. These affine
transformations have desirable properties, and will aid in
the development of the final, continuous color transform in
Section 4. However, the SMSP transformations are quite
general, and of interest independent of the color transfer ap-
plication.

3.1. Intuition
Suppose that our goal is to compute a transformation φ

which maps a vector random variable Z1 with mean and
covariance matrix µ1, σ1, so that the transformed variable
Z2 = φ(Z1) has mean and covariance matrix µ2, σ2. We
will focus on affine transformations, i.e. Z2 = φ(Z1) =
B12Z1 + b12.

There are multiple such transformations, but not all are
equally sensible. A simple example illustrates the problem.
Suppose that the vectors Z represent RGB color vectors,
and that the covariance matrices are

σ1 =

[1 0 0
0 ε 0
0 0 ε

]
and σ2 =

[
ε 0 0
0 ε 0
0 0 1

]
where ε is a very small number. Thus, the initial distribu-
tion has various shades of red, and the final distribution has
various shades of blue. Ignoring the role of the means for
a moment (or altenatively, assuming zero means), the most
straightforward transformation which suggests itself is

B12 = σ2σ
−1
1 =

[
ε 0 0
0 1 0
0 0 ε−1

]



Such a transformation will indeed ensure that the trans-
formed variable Z2 has covariance matrix σ2. However, it is
also clear that in some sense, this is quite an extreme trans-
formation, which greatly squashes the red axis (by a factor
of ε) and greatly expands the blue axis (by a factor of ε−1).
In fact, if ε→ 0, this is a very problematic transformation.

Instead, one might consider the transformation

B12 =

[0 0 1
0 1 0
1 0 0

]
This transformation does not lead to any stretching or
squashing, and is in fact valid for ε = 0. We can therefore
plausibly claim that this transformation is in some sense bet-
ter.

3.2. Desiderata
Let us now capture this intuition in a formal optimiza-

tion framework. We would like to compute an affine trans-
formation Z2 = φ(Z1) = B12Z1 + b12, with the following
properties.
1. Structure Preservation (SP). We would like the trans-
formation φ to preserve the structure of the random variable
Z1. There are many possible definitions of structure; here
we focus on two natural properties.
(a) The first two moments are preserved. That is, the
mean matches the desired mean:

µ2 = E[Z2] = B12E[Z1] + b12 = B12µ1 + b12

Thus, b12 = µ2 − B12µ1, and Z2 = φ(Z1) = B12(Z1 −
µ1) + µ2.

Also, the convariance matrix must match the desired co-
variance matrix:

σ2 = E[(Z2 − µ2)(Z2 − µ2)T ]

= E[B12(Z1 − µ1)(Z1 − µ1)TBT12]

= B12σ1B
T
12

(b) Orthogonality of the principal directions is pre-
served. Here, we focus on the principal directions of the
covariance matrix σ1. Specifically, we insist that the or-
thogonality of the principal directions is preserved under
the transformation φ.

Let σ1 = U1D1U
T
1 be the eigendecomposition of σ1, so

that the principal directions are the columns of the matrix
U1. Then structure preservation says that B12U1 is an or-
thgonal, though not orthonormal, matrix. We may rewrite
this as (B12U1)T (B12U1) is diagonal.
2. Stretch Minimization (SM). We measure the stretch
of the transformation φ in terms of how much the transfor-
mation squashes or stretches the axes (see the example in
Section 3.1). A natural way to measure this is in terms of
the singular values of the matrix B12. In particular, let the
singular values of B12 be denoted si(B12). Then we can
define the stretch of the transformation φ as

Θ(φ) = Θ(B12) =
3∑
i=1

θ(si(B12))

where θ(s) punishes values that are far away from 1, i.e.
that constitute a stretch of a squash. Possibilities for θ in-
clude

θ(s) = | log(s)| and θ(s) = max{s, s−1} = e| log(s)|

Note that in cases where one of the covariance matrices
is singular or nearly singular, we may wish to use a robust
version of the stretch penalty, i.e. θr(s) = min{θ(s), θ0}.
For example, if θ(s) = max{s, s−1}, we might take θ0 =
10.

3.3. Definition and Computation of the SMSP
To summarize: we would like to compute an affine trans-

formation Z2 = φ(Z) = B12Z1 + b12 which preserves
structure and minimizes stretch. We have already shown
that preservation of means implies that b12 = µ2 − B12µ1.
It remains to compute B12. Using the other properties de-
scribed above, this leads to the following optimization:

min
B12

Θ(B12) subject to B12σ1B
T
12 = σ2 (1)

(B12U1)T (B12U1) is diagonal

The solution to this optimization is contained in the fol-
lowing theorem.

Theorem 2 Let σk = UkDkU
T
k and let dk,i = (Dk)ii for

k = 1, 2 and i = 1, 2, 3. Then the solution to (1) is B∗12 =
U2S12P12U

T
1 , where

• P12 is a permuation matrix, corresponding to the per-
mutation π which solves

min
π

3∑
i=1

θ((d2,i/d1,π(i))1/2)

This is an instance of the assignment problem, which
can be solved e.g. by the Hungarian Method [6].

• S12 is a diagonal matrix whose iith entry is
(d2,i/d1,π(i))1/2 (where π is as above).

Proof: Omitted due to space constraints. �
The SMSP transformation is thus easy to compute, re-

quiring only diagonalization and singular value decomposi-
tion of small (3 × 3) matrices, as well as the solution of a
small Assignment Problem (again 3× 3).

We will now turn to the issue of incorporating these SM-
SPs within the color transfer algorithm.

4. The Color Transform as a Convex Sum of
SMSP Transformations

Our goal is to compute a color transformation, which
maps target colors to source colors. We have computed
a discrete color flow, fij , from the target distribution to
the source distribution, by solving the Smoothed Relaxed
Transportation Problem. In this section we show how to
turn such a discrete flow into a continuous transformation,
using the machinery of SMSP transformations.



4.1. From Flows to Pairs of Random Variables
We would like to map from the discrete color flow to a

continuous color transformation. The key to this procedure
is to think of the normalized flow for each target bin i and
each source bin j as probability distributions, which can tell
us which target colors ought to be mapped to which source
colors. These normalized flows will lead to the definition
of pairs of random variables for each target bin i; we can
then map from the first such variable to the second using an
SMSP transformation.

Let us begin with the normalized flows. Formally, the
normalized target and source flows are, respectively,

ptsij =
fij∑
j′ fij′

and pstji =
fij∑
i′ fi′j

The normalized target flow (denoted with the superscript
ts to indicate the mapping from target to source) gives the
distribution of source colors corresponding to the ith tar-
get color. Similarly, the normalized source flow (denoted
with superscript st) gives the distributions of target colors
corresponding to the jth source color. Our goal is to use
these normalized flows to compute statistics, i.e. means and
covariance matrices, of a pair of vector random variables
associated with the ith target color.

Let us begin with the source random variable associated
with target bin i. The distribution of source bins associated
with target color i is simply the normalized source flow, ptsij .
We wish to compute the statistics of the source random vari-
able associated with bin i, that is the mean µ̃si and covari-
ance matrix σ̃si . Suppose that we have the mean and second
moment associated with each source bin, i.e.

µsj = E[s|s ∈ binj ] and vsj = E[ssT |s ∈ binj ]

(In practice, µsj and vsj are computed from the samples
within bin j in the standard way.) Then the statistics of
the source colors associated with bin i are

µ̃si =
∑
j

ptsijµ
s
j and σ̃si =

∑
j

ptsijv
s
j − µ̃si (µ̃si )T (2)

Now, let us turn to the target random variable associated
with target bin i, by examining the distribution of target bins
associated with target color i. One might think that this is
naturally the degenerate distribution with all of its weight
on bin i. However, using our knowledge of the flow f , we
can be more sophisticated in our analysis. In particular, the
normalized target flow ptsij indicates the source bins j as-
sociated with the target bin i; but for each such source bin
j, the normalized source flow pstji indicates the target bins i
associated with that bin. Thus, we can combine the normal-
ized target and source flows to understand which target bins
are related, where by related we mean that they map to the
same source bins j. Specifically, we define

pttii′ =
∑
j

ptsijp
st
ji′

or in matrix notation, ptt = ptspst. This distribution relates
target bin i to target bin i′; pttii′ will be large if target bins i
and i′ map to similar source bins, and small if this is not the
case. It is easy to verify that ptt is a stochastic matrix, i.e.∑
i′ p

tt
ii′ = 1.

Given pttii′ , we wish to compute the statistics of the target
random variable associated with bin i, that is the mean µ̃ti
and covariance matrix σ̃ti . We proceed precisely as in the
case of the source statistics. Suppose that we have the mean
and second moment associated with each target bin, i.e.

µti = E[t|t ∈ bini] and vti = E[ssT |y ∈ bini]

(In practice, µti and vti are computed from the samples
within bin i in the standard way.) Then the statistics of the
target colors associated with bin i are

µ̃ti =
∑
i′

pttii′µ
t
i′ and σ̃ti =

∑
i′

pttii′v
t
i′ − µ̃ti(µ̃ti)T (3)

4.2. The Color Transform
Now, we would like to compute the optimal transforma-

tion for bin i. In particular, we would like to transform a
distribution with mean and covariance matrix µ̃ti, σ̃

t
i to one

with mean and covariance matrix µ̃si , σ̃
s
i . To do so, we use

the SMSP machinery, and denote the resulting transforma-
tion as Ψi(t). We know from Section 3 that the resulting
transformation will have as small a stretch as possible, while
preserving the structure of the target random variable.

Finally, we write the overall transformation as a convex
sum of such SMSP transformations, that is

Ψ(t) =
nt∑
i=1

wi(t)Ψi(t) (4)

where the non-negative weights wi(t) sum to 1, i.e.,∑
i wi(t) = 1, with wi(ti) = 1. In other words, the overall

transformation Ψ(t) interpolates the bin-by-bin transforma-
tions Ψi(t). In practice, we take

wi(t) =
d(t, ti)−α∑
i′ d(t, ti′)−α

where d is the distance between two target colors, and α >
0.

An interesting property of this algorithm occurs when
the smoothness weight, γ, goes to ∞ in the computation
of the color flow in the Smoothed Relaxed Transportation
Problem. Let µstot, σ

s
tot be the mean and covariance ma-

trix of the entire collection of source vectors (i.e. ignoring
the histogram bins, and simply pooling all source vectors
together), and likewise for µttot, σ

t
tot. Then:

Theorem 3 Let the color flow fij be computed as the solu-
tion to the Smoothed Relaxed Transportation Problem, with
η = 1 and γ → ∞. Then the color transformation Ψ(t)
is the SMSP transformation from the random variable with
mean and covariance matrix µttot, σ

t
tot to the random vari-

able with mean and covariance matrix µstot, σ
s
tot.
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Figure 1. Left: the color transform workflow. Right: an example of semi-automatic segmentation using the technique of [1]. The green
rectangle is the object seed, and the red rectangle is the background seed.

Proof: Omitted due to space constraints. �
This property is quite useful. It says that as the smooth-

ness term becomes the dominant term, the transformation
approaches the transformation one would get by consider-
ing the source and target distributions to be unimodal. In
that sense, in the limit as γ → ∞, the solution should ap-
proach something like that of Reinhard et al. [9]. However,
the solution will still differ, as the SMSP transformation is
more robust than the straighforward affine transformation
of [9].

4.3. Putting it All Together
Let us summarize the construction of our color transfor-

mation.

1. Compute the optimal color flow fij by solving the
Smoothed Relaxed Transportation Problem.

2. Compute the statistics of each target bin i using
the color flow: the target mean and covariance ma-
trix (µ̃ti, σ̃

t
i) and source mean and covariance matrix

(µ̃ti, σ̃
t
i), using Equations (3) and (2) respectively.

3. For each target bin i, compute the SMSP transforma-
tion Ψi(t) which maps the target mean and covariance
matrix (µ̃ti, σ̃

t
i) to the source mean and covariance ma-

trix (µ̃ti, σ̃
t
i) using Theorem 2.

4. Transform any target color t as a weighted sum of the
optimal SMSPs, according to Equation (4).

5. Results
We begin by describing the overall color transform work-

flow, which is detailed on the left side of Figure 1. Both
source and target images are segmented to yield the source
and target regions, respectively. The segmentation tech-
nique used is an interactive, or semi-automatic technique,
based on the random walker with priors technique of Grady
[1]. The user is required to select a rectangle3 for both the

3It is also possible to select more than one rectangle for either the object
or background; however, this was only necessary for the hockey player
image, in which the object and background have similar color distributions.

D(t, s) Description Examples
‖t− s‖2 “Ordinary L2” 1, 2, 4
|‖t‖1 − (1− ‖s‖1)| “Inverted Brightness

Distance”
3∥∥∥ t

‖t‖1 −
s
‖s‖1

∥∥∥
2

“Brightness-Invariant
Distance”

5

Table 1. The color distances used in the experiments. The example
number refers to the row number in Figure 2.

object and the background; based on these “seeds,” the al-
gorithm computes the most likely segmentation. The pro-
cedure is illustrated on the right side of Figure 1.

Returning to the color transform workflow, the source
and target segmentations yield histograms, from which the
color transformation Ψ may be computed, as described in
Sections 2, 3 and 4. This transform is then applied to all pix-
els within the target region, finally yielding the transformed
output image.

We chose the following parameter values for the exper-
iments. η, the slackness in the conservation constraints, is
set to 2. p, the norm used in the smoothness term, is also
set to 2, so that quadratic programming may be used. γ, the
weight of the smoothness term, is set to 1. The stretch func-
tion θ(s) = min{max{s, s−1}, 10}. Finally, α, which is
used to compute the interpolation weights wi(t), is set to 4.
The color distance D(t, s) varies from example to example,
and is listed in Table 1.

5.1. Experiments
In each experiment, the proposed method is compared

with the popular method of Reinhard et al. [9]. The latter
technique transforms the source and target regions to Lab
color space, and then transforms the mean and variance of
each of the three channels separately in the natural way. We
of course use the segmentations as preprocessing for both
the proposed method and the method of Reinhard et al.

The results are shown in Figure 2, with the color distance
for each example given in Table 1; in all cases, the colors
used are RGB. Note that in the case of the Inverted Bright-
ness Distance, the formula for D(t, s) assumes that s and
t have been normalized so that ‖s‖1, ‖t‖1 ∈ [0, 1] for all



(a) (b) (c) (d)
Figure 2. (a) Source image. (b) Target image. (c) Method of Reinhard et al. [9]. (d) Proposed Method.

source and target vectors. The segmentation masks for both
source and target are omitted due to space constraints.

The first row of Figure 2 shows a green Hummer being
recolored blue. Both the proposed method and the Reinhard
method succeed here, which is not surprising given the uni-
modal nature of both source and target distributions. Note
that the proposed method uses the Ordinary L2 distance be-
tween RGB vectors.

The situation becomes more interesting in the second
row, in which the source is a crest and the target is a football
player’s uniform. The color distance used here is again the
Ordinary L2 distance between RGB vectors. In this case,

both the source and the target have two modes. Not sur-
prisingly, the method of Reinhard fails here; the purple on
the uniform is turned to a slightly brighter purple, while
the white is turned to a pale green. Neither of these col-
ors is found in the source image. By contrast, the proposed
method performs in the natural way, turning the purple on
the uniform to the blue of the crest, and the white on the uni-
form to the yellow of the crest. Note that the look and feel
of the uniform is retained – for example, creases in the jer-
sey are maintained, and darker purple regions are mapped
to darker blue regions. This can be credited to the locally
SMSP behavior of the color transform.



The third row presents another example in which both
source and target are bimodal. For a different take, we use
a different color distance, the Inverted Brightness Distance.
This distance matches dark source colors to bright target
colors and vice versa. In this case, note the success of the
proposed method in correctly mapping the white source re-
gion to the black target region, and the pink source region to
the blue target region. Due to the use of this “inverted” color
distance, there are some artifacts produced: the shadows on
the dress (darker blue regions) are mapped to lighter pink re-
gions. Nonetheless, the look and feel of the target is largely
retained, but with the source color scheme. The Reinhard
algorithm produces a random coloration again, with the jer-
sey colored in red and the skirt in a very light pink, neither
of which appear in the source image. (Note that both algo-
rithms suffer some artifacts at the top of the shirt, which is
colored in black; this is due to a mistake in the segmenta-
tion, and is unrelated to the color transforms.)

The fourth row shows a trimodal example. Here, the
source consists of the purple and yellow flowers, along
with the green grass and leaves; while the target consists
of the hockey player’s jersey and glove, which are colored
in white, red, and blue. Here we used the Ordinary L2 dis-
tance between RGB vectors as the color distance. The pro-
posed method plausibly recolors the shirt, mapping white
to yellow, red to purple, and blue to green. The Reinhard
method also maps white to yellow (albeit a paler yellow),
but retains the red and blue of the original target, simply
brightening each.

The fifth row shows a shadow removal example. In this
case, the source and target images are the same, but the
source region is the region which is lit, and the target re-
gion is in shadows. The color distance is now naturally the
Brightness-Invariant Distance. The proposed method does
a good job; while leaving some artifacts around the edge of
the shadow (perhaps penumbra), the shadow is largely re-
moved. The Reinhard method suffers the usual problems,
inventing colors which are not part of the source. Note that
there are many well developed techniques for shadow re-
moval, such as [11], which may perform very well on such
an image. Our goal is not to claim dominance in the area of
shadow removal, but simply to suggest another possible use
for the proposed framework.

Our final result is shown in Figure 3. Here we show the
results of the proposed method with two different color dis-
tances. The result are shown in the bottom row: the left im-
age uses the Brightness Distance D(t, s) = |‖t‖1 − ‖s‖1|
while the right image uses the Inverted Brightness Distance
(see Table 1). Thus, the former image maps the stripes
on the target fish to white stripes, whereas the latter image
maps them to black stripes. Due to the segmentation, which
includes the fish’s eye, the latter example also whitens the
eye of the fish.
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