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Abstract In this paper, we present a unified approach for
the problem of computing color transforms, applications of
which include shadow removal and object recoloring. We
propose two algorithms for transforming colors. In the first
algorithm, the detection of source and target regions is per-
formed using a Bayesian classifier. Given these regions, the
computed transform alters the color properties of the target
region so as to closely resemble those of the source region.
The proposed probabilistic formulation leads to a linear pro-
gram (similar to the classic Transportation Problem), which
computes the desired transformation between the target and
source distributions. In the second algorithm, the detection
and transformation steps are united into a single unified ap-
proach; furthermore, the continuity of the transformation
arises more intrinsically within this algorithm. Both formu-
lations allow the target region to acquire the properties of
the source region, while at the same time retaining its own
look and feel. Promising results are shown for a variety of
applications.

Keywords Color transform · Transportation problem ·
Finite elements

1 Introduction

Recent years have witnessed great advances in digital pho-
tography, and with them the increasing accessibility of vari-
ous image editing and manipulation tools. However, most of
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these tools, such as Photoshop, still require a skilled operator
and are far from being automatic. In this paper, we propose
a technique for computing a color transform between two
objects within an image, or between two images. In our ap-
proach, source and target regions are specified, either auto-
matically or semi-automatically, and the color properties of
the target region are transformed so as to closely resemble
those of the source region. We develop a unified scheme for
these tasks based on the computation of a flow between tar-
get and source distributions. The approach is quite effective,
and we show results on two applications: shadow removal
and recoloring.

Before delving more deeply into details, we begin with a
short review of prior work.

1.1 Prior Work

Many shadow detection and removal methods are based on
the intrinsic image separation approach, wherein a single
image is decomposed into its reflectance and illumination
components (e.g., [1, 2]). In the algorithms employing the
retinex theory [3], this separation is based solely on the
assumption that large and sharp changes in lightness stem
from the reflectance change, while small and slowly chang-
ing gradients are mainly due to the illumination changes. For
example, in [4] the authors use the bilateral filter to separate
small features, such as textures, from large features, such
as strong edges. The approach requires various user inputs
including the typical texture size.

In a different direction, a series of papers by Finlayson et
al. ([5, 6], and references therein) exploits an approach based
on a physical model, including Planckian light and Lam-
bertian reflectance. The authors make the following sim-
plifying assumptions: (i) the illumination is constant in the
shadows region, (ii) the shadows have sharp edges, and (iii)
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the reflectance does not change across the shadow bound-
aries. These assumptions are valid only in very specific set-
tings.

Another set of techniques is based on the matting ap-
proach, where an observed image is modeled as a linear
combination of fully lit and fully shadowed counterparts [7].
Further development of the matting approach is presented
in [8], where the authors propose a shadow formation model
in which the lit intensity at a given pixel is an affine func-
tion of the shadowed intensity. The illuminated pixel color
is recovered by estimating the four parameters of the affine
model, based only on the mean colors of the pixels in the lit
and shadowed regions, and on standard deviations of their
corresponding luminances.

Recoloring methods have developed separately from
those dealing with shadow removal. Many recoloring pa-
pers focus on the problem of transferring color to gray scale
images, and vice versa (e.g., [9]). In [10], the authors pro-
pose a recoloring method that is based on alpha matting
and compositing, and a color transformation algorithm. The
transformation function is postulated to be single-valued and
monotonically increasing in the destination pixel intensity
domain. The authors estimate the cumulative distribution
function (cdf) of the destination region in an image as sim-
ply a scaled version of the cdf of the source region. Finally,
the compositing operation is implemented using the alpha
matte equation. In [11], the authors propose a natural col-
orization approach which is based on the assumption that
pixels having similar intensities should have similar color.
In this paper, the input image (or sequence) is gray scale
and the output image is a colored image. In [12], the authors
present a method for recoloring a destination image accord-
ing to the color scheme from the source image. The image
is first segmented into groups of pixels with similar color;
then, the color palette for an image is constructed by choos-
ing the most typical colors from the above segments. Color
transfer is computed by matching the segment areas between
the source and destination segments, and finding the closest
Euclidean distance match between pairs of colors from the
source and destination segments. In [13], the authors apply
a linear transformation that scales the mean and the variance
of the target area according to the ones from the source area.
In [14], the authors use the approach in [13] along with a
simple segmentation technique to perform recoloring oper-
ations. In [15], the authors present generic machinery for
transforming probability distributions, which can be applied
to the problem to the problem of color transfer.

Somewhat related work in [16] describes a generic in-
terpolation machinery based on solving Poisson equations.
This approach belongs to the gradient domain methods. The
authors present various editing applications such as object
importation from one region (or an image) to another, seam-
less cloning of textures, and others.

Note that a preliminary version of this paper appeared
in [17]. This earlier version of the paper, however, only pre-
sented the cruder algorithm contained in Sect. 3. The algo-
rithm described in Sect. 4, which is much more mathemati-
cally elegant, is entirely new to this paper.

1.2 Paper Outline

The remainder of this paper is organized as follows. In
Sect. 2, we outline the problem of computing color trans-
forms, and divide the problem into two stages: detection
and learning of the color transform. In Sect. 3, we present
a first pass for the color transform problem, in which sepa-
rate algorithms are proposed for the detection and transfor-
mation stages. In Sect. 4, we present a second pass for the
color transform problem, in which the detection and trans-
formation stages are unified, and the algorithm is inherently
continuous. In Sect. 5, we present results of applying the
algorithm to the problems of shadow removal and object re-
coloring. Section 6 concludes.

2 The Problem

The problem we are interested is transfer of color properties
from one object in an image to another. More specifically,
given some knowledge of the source and target properties,
we wish to accomplish two tasks:

1. Detection: Find the regions of the image which corre-
spond to the source and target properties. These regions
constitute the source and target objects, respectively.

2. Photometric Transform: Transform the color properties
of the target object to resemble those of the source object,
in perceptually meaningful way.

Before posing the problem in a more formal fashion,
we discuss two applications of this framework. The first is
shadow removal. In this problem, both the source and the
target derive from the same material or object; however, the
source is lit, while the target is in shadow. The second appli-
cation is object recoloring. Here, the goal is to simply take a
given object, and to transfer its colors to a second object. Of-
ten the two objects are of the same type (such as two cars),
but this need not be the case. Both shadow removal and ob-
ject recoloring are desirable operations for many computer
graphics applications, as well as in the context of Photoshop-
type software.

Let us now turn to a more formal statement of the prob-
lem. Let color be denoted by the vector c ∈ C = R

d . The
color c could be represented in Lab space, RGB space, or
any of many other possibilities. In principle, the techniques
presented in this paper could also be applied to learning
texture transforms, where texture is represented, for exam-
ple, as the output of a filter bank. Let the image domain be
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X ⊂ R
2, so that an image is given by c : X → C . Then

our two goals may be restated as follows:

1. Detection: Find two subsets of the image domain X , the
source region S and the target region T , with S ∩T =
∅.

2. Photometric Transform: For each pixel x ∈ T , com-
pute a mapping c(x) → Φ(c(x)) such that the collection
{Φ(c(x)) : x ∈ T } is in some perceptual sense similar to
the collection {c(x) : x ∈ S }.
In Sect. 3, we begin by treating each of these problems in-

dependently. In Sect. 4, we then propose a unified algorithm
to treat both detection and color transformation simultane-
ously. The second algorithm is also more inherently contin-
uous than the first.

3 The Color Transform: First Pass

In this section, we present the algorithm for computing color
transforms. Although logic would dictate that we begin our
exposition with the detection of the source and target re-
gions, we begin instead with a discussion of the color trans-
form algorithm, which allows the detected target region to be
transformed into something resembling the detected source
region. This is done in order to emphasize the color trans-
form algorithm, which is the more important contribution.
The basis for the algorithm is a version of the Transporta-
tion Problem [18, 19], which can be posed as a linear pro-
gram; this optimization, combined with an appropriate inter-
polation scheme, yields an effective technique for comput-
ing color transforms. We then move on to a discussion of the
Detection Algorithm, including an examination of the form
of user-input required.

3.1 The Color Transform

We begin with the main algorithmic contribution of this sec-
tion: the transformation of the color properties of the target
region so that they closely resemble those of the source re-
gion. To repeat our earlier formulation of this problem: for
each pixel x ∈ T , we wish to compute a mapping c(x) →
Φ(c(x)) such that the collection {Φ(c(x)) : x ∈ T } is in
some sense similar to the collection {c(x) : x ∈ S }. This is
not a straightforward problem, as the two collections may be
quite different. For example, probability distributions over
the source and target pixels (i.e. over their colors) may have
different numbers of modes, different shapes, and so on.

Our solution to this problem is to use the classic Trans-
portation Problem to compute the transformation between
the two distributions. In the Transportation Problem [18, 19],
the goal is to match supplies of certain quantities with de-
mands for these quantities, bearing in mind the absolute

amounts of both supplies and demands. This is computed
via a flow between supplied quantities and those demanded.
In what follows, we make the analogy between supplied
quantities with the target region, and demanded quantities
with the source region. The flow thus computed by the so-
lution to the Transportation Problem is exactly what we are
after: it allows us to transform target pixels into source-like
pixels.

Before turning to a more formal statement of the prob-
lem, it is of interest to note that the Transportation Problem
has been used in computer vision applications before, most
notably for the computation of the Earth Mover’s Distance
(EMD) [20]. Indeed, a by-product of the EMD computation
is the flow that will be useful to us; however, in the context
of EMD the flow is nothing more than a by-product, and
is used only to facilitate the computation of the EMD met-
ric. By contrast, in the development of our algorithm, the
flow itself plays a critical role. It is also worth noting that a
few works have used somewhat related ideas [21], albeit in
the continuous setting and for different applications, such as
registration.

Let us begin by fixing notation. The labels for source and
target objects will be s and t respectively, and when speak-
ing of an object defined for both, we will use α ∈ {s, t}.
We are given source and target probability distributions,
which are learned as part of the Detection Algorithm (see
Sect. 3.2). As usual, there are a variety of ways of rep-
resenting distributions. In this section, we use simple his-
tograms; we move on to more sophisticated representations
in Sect. 4. We represent the source and target distributions
compactly as a list of histogram bins with non-zero proba-
bility, i.e. {(c̄α

i , p̄α
i )}nα

i=1, where c̄α
i is a bin-center, p̄α

i is the
corresponding probability mass for that bin, and nα is the
number of such bins. Finally, for a given color c, let [c]α be
the bin in which it resides (where again α ∈ {s, t}).

Given the above notation, we can now turn to the prob-
lem of computing the color transform, for which we use
the Transportation Problem. Recall that the Transportation
Problem is formulated as follows [18, 19]: let the flow be-
tween the target and source distributions be given by fij ,
where the indices i and j range over the (non-empty) bins
of the target and source distributions, respectively. That is,
fij can be thought of as the part of target bin i which is
mapped to source bin j . Now, let the color distance between
two colors1 be given by D(c1, c2). As we shall see in the se-
quel, while this distance is sometimes taken as the ordinary
Euclidean distance, there are times when other choices are
more appropriate. In any case, taking the color distance as
given for the moment, we would like to solve the following

1In the work on the Earth Mover’s Distance, D is generally called the
ground distance.
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optimization:

min{fij }

nt∑

i=1

ns∑

j=1

fijD(c̄t
i , c̄

s
j )

subject to
ns∑

j=1

fij = p̄t
i , i = 1, . . . , nt

nt∑

i=1

fij = p̄s
j , j = 1, . . . , ns

The goal of the objective function is to map the target
colors c̄t

i to corresponding source colors c̄s
j in such a way

that the color distance between them is as small as possi-
ble. However, we cannot reasonably expect that each bin of
the target distribution maps neatly to exactly one bin of the
source distribution. Thus, we allow target bins to be spread
over several source bins, subject to the two constraints of
the original Transportation Problem, which ensure “conser-
vation of probability” for both the target and source distrib-
utions.

In fact, in our case requiring conservation of probabil-
ity is too extreme2 as it assumes that the source and target
regions contain exactly the same amounts of “comparable
colors.” As a result, we modify the optimization as follows:

min{fij }

nt∑

i=1

ns∑

j=1

fijD(c̄t
i , c̄

s
j )

subject to η−1p̄t
i ≤

ns∑

j=1

fij ≤ ηp̄t
i , i = 1, . . . , nt

η−1p̄s
j ≤

nt∑

i=1

fij ≤ ηp̄s
j , j = 1, . . . , ns

∑

i,j

fij = 1

(1)

where the final constraint, which was enforced implicitly in
the original Transportation Problem, is now made explicit.
η ≥ 1 is a parameter which describes the slackness of the
conservation constraints; typically, we choose η ≈ 3.

Now, given the solution to the modified Transportation
Problem, the problem of computing the color transform is
effectively solved. In particular, if we were interested only
in mapping the bin centers c̄t

i , we have the following color

2For example, suppose that the source image is 50% light red and 50%
dark red, and the target image is 40% light blue and 60% dark blue;
assume further that the light colors have matching L values, as do the
dark values, and that our color distance is simply the absolute value
of the difference in L. Then the full conservation of probability will
require coloring part (10%) of the dark blue section of the target image
in light red, which is obviously not desirable.

transform rule:

c̄t
i →

∑ns

j=1 fij c̄
s
j∑ns

j=1 fij

≡ Φ(c̄t
i ) (2)

That is, we use the flow to average over the source bin
centers in the natural way, and then normalize. Notice that∑

j fij ≤ ηp̄t
i � 1, so that the normalization is crucial.

Note that the color transform Φ is defined only for the
bin-centers c̄t

i ; however, we wish to transform not just the
bin centers of the target distribution, but all of the pixels in
the target region T . To achieve this, the simplest option is
to map a pixel c(x) in T to its corresponding bin [c(x)]t ,
and then to use the transformation rule in (2) on the binned
value. Predictably, however, this leads to binning artifacts;
two colors which are quite close may in fact lie in differ-
ent bins, and therefore be mapped to quite different values.
Instead, we use the transformation rule given in (2) in com-
bination with a simple interpolation scheme.

To wit, consider a pixel in T with color c (we drop
the argument x to simplify notation), with histogram bin
[c]t . Now, given a bin i in the target distribution, then let
Ni be the union of the bin itself, as well as the neighbor-
ing (non-empty) bins within the histogram; for example, if
the histogram is 2-dimensional, and we use a standard 4-
neighborhood, then Ni would contain at most 5 elements.
(In general, for a d-dimensional histogram, we use a 2d-
neighborhood, so that Ni contains at most 2d +1 elements.)
For each bin i in the neighborhood of c, i.e. in N[c]t , we
compute a weight based on the distance D(c, c̄t

i ) between
c and the center of bin i, c̄t

i . In particular, the weights are
given by

wi(c) = ξ(D(c, c̄t
i ))∑

j∈N[c]t ξ(D(c, c̄t
j ))

where ξ satisfies ξ ′(·) < 0 and ξ(0) = ∞; the latter property
ensures that the scheme is truly interpolatory, rather than
an approximation scheme. We choose ξ(d) = d−1, though
other choices are possible. In this case, the final color trans-
form rule is given by

Φ(c) =
∑

i∈N[c]t
wi(c)Φ(c̄t

i ) (3)

3.2 Detection

In order to detect the source and target regions, we must have
some prior knowledge of both the source and target images.
To begin with, let us assume that we have probability densi-
ties over c for both the source and target, i.e. ρs(c) = ρ(c|s)
and ρt (c) = ρ(c|t). Let us further assume a uniform distrib-
ution over the regions that are neither source nor target, i.e.
ρn(c) = ρ(c|n) = θ , where θ is a constant chosen so that
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ρn(c) integrates to 1. Now, the standard Bayesian classifier
will classify a value of c as belonging to the source if

ρ(s|c) > max{ρ(t |c), ρ(n|c)}
(Note that if there is equality, we are on the boundary of at
least two classes.)

Now, from Bayes’ Rule we have that ρ(s|c) = ρ(c|s) ×
P(s)/ρ(c), where P(s) is the probability that a given pixel
belongs to the source. Assuming, in the absence of other
knowledge, that P(s) = P(t) = P and P(n) = 1 − 2P , then
the Bayesian classifier becomes:

– Choose x ∈ S if ρs(c(x)) > max{ρt (c(x)), θ ′}
– Choose x ∈ T if ρt (c(x)) > max{ρs(c(x)), θ ′}
– Choose x as neither source nor target in all other cases

where θ ′ = (1−2P)θ/P . It is clear, therefore, that given the
source and target densities ρs(c) and ρt (c), we have a sim-
ple classifier that depends only on the choice of the single
parameter θ ′.

The next question, then, concerns the origin of the source
and target densities. In certain applications, it is possible
that these densities are known a priori; for example, one
might use any of a number of schemes to learn the color
density of blue skies, grass, or skin (e.g., [22]). However,
assuming that this is not the case, we use two variants of a
semi-automatic scheme. In the simpler variant, used for re-
coloring or for shadow removal, the user simply chooses two
rectangles, one which surrounds source pixels and the other
target pixels. Based on these rectangles, we then compute
histograms for each of the source and target in the relevant
space—in our case, Lab color. Note that the histogram bin
size in some sense determines the extent to which we extrap-
olate from the information conveyed by the pixels within the
user-chosen rectangles.

The second variant of the semi-automatic scheme is more
complex, and may be used for shadow removal. In this case,
the user chooses a single rectangle, which encompasses both
lit and shadowed pixels. The pixels, which are represented
in Lab space, are then divided by performing a k-means
clustering, with k = 2, on the L-channel. Then, correspond-
ing source and target distributions are easily computed. This
heuristic works very well in practice.

4 The Color Transform: Second Pass

In this section, we outline a second version of the color
transformation algorithm. The advantages of this second
version over the first version presented in Sect. 3 are
twofold:

– The color transformation is inherently continuous. Where-
as the flow computation presented in Sect. 3 was discrete,

and the color transformation was extended to a continuous
one in an essentially ad hoc manner, the flow computation
presented here is continuous from the beginning.

– Detection is included within the color transformation it-
self. Rather than breaking the problem up into detection
and transformation steps, the second version of the algo-
rithm treats detection and transformation simultaneously.
This is both more elegant mathematically and potentially
more efficient.

We begin by outlining the basic continuous formulation.
We then show how to convert this into a problem amenable
to solution by computer using a finite element representa-
tion. This yields a finite dimensional optimization problem,
but with an infinite number of constraints. We subsequently
derive a sufficient set of conditions for the constraints to
hold; these sufficient conditions consist of a finite number
of constraints, leading to a traditional finite-dimensional op-
timization problem. Finally, we show how to compute a key
quantity used by the algorithm in an efficient manner.

4.1 The Basic Continuous Formulation

The modified transportation problem in (1) can be naturally
replaced by the following continuous version.

min{f (·,·)}

∫ ∫
f (ct , cs)D(ct , cs)dctdcs (4a)

subject to η−1pt(ct ) ≤
∫

f (ct , cs)dcs ≤ ηpt (ct ),

∀ct (4b)

η−1ps(cs) ≤
∫

f (ct , cs)dct ≤ ηps(cs),

∀cs (4c)
∫ ∫

f (ct , cs)dctdcs = 1 (4d)

f (ct , cs) ≥ 0, ∀ct , cs (4e)

where the continuous flow f (ct , cs) has replaced the dis-
crete flow fij ; and pt(ct ), ps(cs) are continuous versions of
the target and source densities, respectively.

Given the flow f , the color transformation can be com-
puted as

Φ(ct ) =
∫

f (ct , cs)csdcs

∫
f (ct , cs)dcs

(5)

in direct analogy with (2).
In general, some numerical scheme must be adopted so

that this infinite-dimensional continuous problem can be
solved by computer. In what follows, we will use a finite
element representation of the relevant continuous objects,
i.e. f , pt , and ps . The problem will then become finite-
dimensional once again, and therefore amenable to a com-
putational solution.

 Author's personal copy 



J Math Imaging Vis (2010) 37: 220–231 225

4.2 Finite Element Representations

We will begin by specifying finite element representations
for the probability densities for both target and source. The
basic specification is that of a Kernel Density Estimate
(KDE), which we write in the usual form,

pt(ct ) = 1

nt

nt∑

i=1

K(ct − ct
i ),

ps(cs) = 1

ns

ns∑

j=1

K(cs − cs
j )

where K is a kernel. Kernels may have compact support,
such as the uniform or Epanechnikov kernels, or may have
infinite support, such as the Gaussian kernel.3 Kernels will
generally have a bandwidth parameter; we suppress this pa-
rameter for notational convenience, but the bandwidth will
need to be set in any implementation. The collections {ct

i }
and {cs

j } can be simply the pixels selected by the user in
the first step of the algorithm. Or, if one prefers a more com-
pact representation, then one can use a combined histogram-
KDE style representation, as in [23].

One of our two main goals is incorporation of the de-
tection process within the color transformation itself. First,
from now on we denote by ct any pixel in the image, which
might be part of the target, or might not. That is, ct is the
color of a pixel which might or might not be modified. It is
the job of the detection algorithm—which will be built in to
the transformation algorithm—to determine whether or not
the pixel is to be modified.

Given this, we can emend the target density as follows:

pt(ct ) = prob(ct ∈ frg)p(ct |ct ∈ frg)

+ prob(ct ∈ bkg)p(ct |ct ∈ bkg)

= ξt

1

nt

nt∑

i=1

K(ct − ct
i ) + (1 − ξt )p

t
bkg(c

t ) (6)

where frg denotes the foreground (i.e. the target), and bkg
denotes the background. The idea behind this modification
is straightforward. If we look at the target density result-
ing from pixels in the entire image, the pixels may either
be drawn from the true target region, with probability ξt , in
which case the density is given by the original KDE; or they
may be drawn from the background, with probability 1 − ξt ,
in which case the density is given by the background density
pt

bkg(c
t ). Without any extra information on the background,

we take the background density to the uninformative or uni-
form density, i.e. pt

bkg(c
t ) = V −1, where V is the volume of

3Of course, in practice the Gaussian kernel is truncated, so that it ef-
fectively has compact support.

the color space. We may similarly rewrite the source density
as

ps(cs) = ξs

1

ns

ns∑

j=1

K(cs − cs
j ) + (1 − ξs)p

s
bkg(c

s) (7)

Now, the final object that needs a finite element represen-
tation is the object we are optimizing over, that is the flow
f itself. Given the original KDE representation of the target
and source densities, a natural finite element representation
for the flow is

f (ct , cs) =
nt∑

i=1

ns∑

j=1

βijK(ct − ct
i )K(cs − cs

j )

In this case, the optimization over the flow will turn into
an optimization over the variables βij . However, due to our
desire to incorporate detection directly into the color trans-
formation, and hence our use of the modified densities in (6)
and (7), we modify the flow slightly as well:

f (ct , cs) =
nt∑

i=1

ns∑

j=1

βijK(ct − ct
i )K(cs − cs

j )+β0δ(c
t − cs)

(8)

where δ(·) is the usual delta-function. Thus, the flow is spec-
ified by the ntns + 1 variables βij and β0.

We may substitute this representation for the flow into the
color transformation given in (5). We have that

∫
f (ct , cs)dcs =

nt∑

i=1

ns∑

j=1

βijK(ct − ct
i ) + β0

using the fact that each kernel integrates to 1. We also have
that

∫
f (ct , cs)csdcs =

nt∑

i=1

ns∑

j=1

βijK(ct − ct
i )c

s
j + β0c

t

using the sampling property of the δ-function and the fact
that

∫
K(x − y)xdx = y when K is symmetric. Thus, the

color transformation becomes

Φ(ct ) =
∑nt

i=1

∑ns

j=1 βijK(ct − ct
i )c

s
j + β0c

t

∑nt

i=1

∑ns

j=1 βijK(ct − ct
i ) + β0

(9)

4.3 The Finite Elements Color Transformation Problem

Given the finite element representations for the target and
source densities and the flow, our goal is to convert the func-
tional optimization in (4) to an ordinary mathematical pro-
gram in which the unknowns are vectors, i.e. the β variables.

 Author's personal copy 



226 J Math Imaging Vis (2010) 37: 220–231

We begin by converting the objective function to a func-
tion of vectors, and then treat each of the constraints in turn.
Given the finite element representation (8) for the flow, the
objective function T [f ] becomes

T [f ] =
∫ ∫

f (ct , cs)D(ct , cs)dctdcs

=
∫ ∫ [

∑

i,j

βijK(ct − ct
i )K(cs − cs

j )

+ β0δ(c
t − cs)

]
D(ct , cs)dctdcs

=
∑

i,j

D̃ij βij + β0

∫
D(ct , ct )dct

=
∑

i,j

D̃ij βij

where in the third line, we have defined

D̃ij =
∫ ∫

K(ct − ct
i )K(cs − cs

j )D(ct , cs)dctdcs (10)

and in fourth line we have used the fact that D(ct , ct ) = 0.
Next we turn to each of the constraints. The right-hand

inequality of constraint (4b) becomes
∫

f (ct , cs)dcs ≤ ηpt (ct ) ⇒
∫ [

∑

i,j

βijK(ct − ct
i )K(cs − cs

j ) + β0δ(c
t − cs)

]
dcs

≤ ηξt

1

nt

∑

i

K(ct − ct
i ) + η(1 − ξt )V

−1 ⇒

∑

i

(
∑

j

βij − η
ξt

nt

)
K(ct − ct

i ) + β0 − η(1 − ξt )V
−1 ≤ 0

where in the last line, we have used the fact the kernel K

integrates to 1. Similarly, the left-hand inequality is

∑

i

(
∑

j

βij − 1

η

ξt

nt

)
K(ct − ct

i ) + β0 − 1

η
(1 − ξt )V

−1 ≥ 0

In direct analogy, we may rewrite the two inequalities for
constraint (4c) as

∑

j

(
∑

i

βij − η
ξs

ns

)
K(cs − cs

j ) + β0 − η(1 − ξs)V
−1 ≤ 0

and

∑

j

(
∑

i

βij − 1

η

ξs

ns

)
K(cs − cs

j ) + β0 − 1

η
(1 − ξs)V

−1 ≥ 0

The overall conservation of probability constraint (4d)
may be rewritten as

∫ ∫
f (ct , cs)dctdcs = 1 ⇒

∫ ∫ (
∑

i,j

βijK(ct − ct
i )K(cs − cs

j )

+ β0δ(c
t − cs)

)
dctdcs = 1 ⇒

∑

i,j

βi,j + β0V = 1

where again, V is the volume of the color space.
Finally, the non-negativity condition (4e) on the flow re-

duces to

∑

i,j

βijK(ct − ct
i )K(cs − cs

j ) + β0δ(c
t − cs) ≥ 0 ⇒

∑

i,j

βijK(ct − ct
i )K(cs − cs

j ) ≥ 0

where we have used the fact that the δ-function is 0 almost
everywhere.

Thus, we may rewrite the continuous optimization prob-
lem (4) as

min{βij },β0

∑

i,j

D̃ij βij

subject to:

∑

i

(
∑

j

βij − η
ξt

nt

)
K(ct − ct

i ) + β0

− η(1 − ξt )V
−1 ≤ 0, ∀ct

∑

i

(
∑

j

βij − 1

η

ξt

nt

)
K(ct − ct

i ) + β0

− 1

η
(1 − ξt )V

−1 ≥ 0, ∀ct

(11)
∑

j

(
∑

i

βij − η
ξs

ns

)
K(cs − cs

j ) + β0

− η(1 − ξs)V
−1 ≤ 0, ∀cs

∑

j

(
∑

i

βij − 1

η

ξs

ns

)
K(cs − cs

j ) + β0

− 1

η
(1 − ξs)V

−1 ≥ 0, ∀cs
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∑

i,j

βi,j + β0V = 1

∑

i,j

βijK(ct − ct
i )K(cs − cs

j ) ≥ 0, ∀ct , cs

The result is a finite-dimensional optimization problem;
that is, the optimizing variables, βij and β , are finite in num-
ber. However, there are an infinite number of constraints, as
evidenced by the ∀ct and ∀cs notation. In the following sec-
tion, we show how to derive a finite number of sufficient
conditions which ensure that the constraints are satisfied.

4.4 The Sufficient Conditions

Consider the first constraint of the optimization prob-
lem (11):

∑

i

(
∑

j

βij − η
ξt

nt

)
K(ct − ct

i ) + β0 − η(1 − ξt )V
−1 ≤ 0,

∀ct

A sufficient condition can be derived by producing a sepa-
rate inequality for the coefficients of each K(ct − ct

i ) term,
as well as a single inequality for the constant terms. That is,

∑

j

βij ≤ ηξt

1

nt

, i = 1, . . . , nt

β0 ≤ η(1 − ξt )V
−1

are sufficient conditions for the first constraint of (11) to
hold. Similar sufficient conditions may be derived for the
second, third, and fourth constraints of (11).

The fifth constraint of (11) does not need any modifica-
tion, which leaves the sixth and final constraint. Once again,
a sufficient condition may be derived by considering the in-
equality for the coefficients of each K(ct − ct

i )K(cs − cs
j )

term separately. This leads to βij ≥ 0 for all i, j .
Using the sufficient conditions, we have the following op-

timization:

min{βij },β0

∑

i,j

D̃ij βij

subject to:

η−1ξt

1

nt

≤
∑

j

βij ≤ ηξt

1

nt

, i = 1, . . . , nt

η−1ξs

1

ns

≤
∑

i

βij ≤ ηξs

1

ns

, j = 1, . . . , ns

η−1(1 − min{ξs, ξt })V −1 ≤ β0 ≤ η(1 − max{ξs, ξt })V −1

∑

i,j

βi,j + β0V = 1

βij ≥ 0, i = 1, . . . , nt , j = 1, . . . , ns

(12)

Since these constraints are sufficient, then any set of β’s
which satisfies them will be feasible for the original pro-
gram (11). Thus, minimizing the objective function subject
to these sufficient conditions, which by inspection can be
achieved via linear programming, will typically yield a sub-
optimal solution.

When will the solution using these constraints be opti-
mal? When the conditions are not only sufficient, but nec-
essary. This will be the case, for example, if for all i, there
exists a c̆t

i such that K(c̆t
i − ct

i′) > 0 only if i′ = i, and there
exists a c̆ such that K(c̆ − ct

i ) = 0 for all i. We must also
have an equivalent condition on the source colors cs

j . Note
that these conditions are exactly fulfilled if we take the ker-
nel K to be δ-functions, which brings us back to the original
discrete formulation of Sect. 3.

Nonetheless, we would expect the solution to be rela-
tively close to optimal, as the overlap between kernels will
in general not be extreme. As a rule of thumb, we would ex-
pect the kernel of a given point to overlap with O(1) other
points.4 As a result, we will be close to the situation in which
the above sufficient conditions are also necessary.

4.5 The Transform Φ when η = 1

In the special case that η = 1, that is, that probability is con-
served, the color transform Φ takes on a particularly nice
form. The color transform was given in (9) as

Φ(ct ) =
∑nt

i=1

∑ns

j=1 βijK(ct − ct
i )c

s
j + β0c

t

∑nt

i=1

∑ns

j=1 βijK(ct − ct
i ) + β0

In the case that η = 1, the first constraint of (12) reduces to

∑

j

βij = ξ

nt

, i = 1, . . . , nt

where for simplicity, we have also taken ξt = ξs = ξ . The
third constraint of (12) becomes

β0 = (1 − ξ)V −1

Now, for convenience, let us define

ĉt
i =

∑
j βij c

s
j∑

j βij

ĉt
i is very similar to the discrete version of the color trans-

form, see Sect. 3. Then substituting these expressions into

4Of course, if the bandwidth of the kernel is chosen to be very large,
a given point could overlap with O(n) other points. This is not the sit-
uation one typically encounters in practice, as users of Kernel Density
Estimates and/or the Mean Shift algorithm will readily recognize.
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the expression for Φ gives

Φ(ct ) =
∑

i K(ct − ct
i )

∑
j βij c

s
j + β0c

t

∑
i K(ct − ct

i )
∑

j βij + β0

=
∑

i K(ct − ct
i )ĉ

t
i (

∑
j βij ) + (1 − ξ)V −1ct

∑
i K(ct − ct

i )
ξ
nt

+ (1 − ξ)V −1

= ξ 1
nt

∑
i K(ct − ct

i )ĉ
t
i + (1 − ξ)V −1ct

ξ 1
nt

∑
i K(ct − ct

i ) + (1 − ξ)V −1

This last expression makes clear both aspects of the color
transform: its continuous nature, and the fact that the detec-
tion process is built in. To see the continuous nature, sup-
pose that ct is such that K(ct − ct

i ) > 0 for a small set I

of indices i, and that K(ct − ct
i ) � V −1 for all such i ∈ I .

Then the transformation can be written

Φ(ct ) ≈
∑

i∈I

wi(c
t )ĉt

i

where wi(c
t ) = K(ct − ct

i )/
∑

i′∈I K(ct − ct
i′). To see the

built in detection process, consider the case when K(ct −
ct
i ) ≈ 0 for all i, so that K(ct − ct

i ) � V −1. In this case,

Φ(ct ) ≈ (1 − ξ)V −1ct

(1 − ξ)V −1
= ct

that is, the pixel is left alone, as desired. The actual expres-
sion for Φ interpolates smoothly between these cases.

4.6 Efficient Computation of D̃ij

The one remaining item is the computation of the integrals

D̃ij =
∫ ∫

K(ct − ct
i )K(cs − cs

j )D(ct , cs)dctdcs

Note that we will need to compute ntns such integrals; as a
result, a method which could speed up the computation is to
be preferred.

Let us begin by defining

Γ (xt , xs) =
∫ ∫

K(ct − xt )K(cs − xs)D(ct , cs)dctdcs

so that D̃ij = Γ (ct
i , c

s
j ). Further, we take D(ct , cs) = E(ct −

cs), as will be the case in all of the examples we consider.
For example, we might have E(ct − cs) = ‖ct − cs‖2. Then
we may rewrite the equation for Γ as

Γ (xt , xs) =
∫ ∫

E(ct − cs)K(ct − xt )K(cs − xs)dctdcs

=
∫ [∫

E(ct − cs)K(xt − ct )dct

]

× K(xs − cs)dcs

=
∫ [∫

E(y)K((xt − cs) − y)dy

]

× K(xs − cs)dcs

=
∫

(E ∗ K)(xt − cs)K(xs − cs)dcs

=
∫

(E ∗ K)((xt − xs) − z)K(z)dz

= (E ∗ K ∗ K)(xt − xs)

In the second line, we have used the symmetry of the ker-
nels; in the third line, we have substituted variables, with
y = ct − cs ; in the fifth line, we have substituted variables,
with z = cs − xs , and again used the symmetry of K ; and ∗
indicates convolution.

In summary, we can compute the entire function Γ as a
result of two convolutions. As usual, we can compute these
convolutions quickly by transforming to the Fourier domain,
and using FFTs. Once Γ has been computed, the D̃ij are
simply computed by sampling the function Γ at the appro-
priate places.

4.7 Implementation Details

In order to solve the color transformation problem, we must
solve either of the two optimization problems, (1) or (12). In
both cases, the optimization is a linear program, for which
many solvers exist. We use the MATLAB solver, which au-
tomatically switches between simplex methods (good for
small problems, but with a potential exponential complex-
ity) and interior point methods (better for large scale prob-
lems, with a guaranteed polynomial worst case complexity)
based on the size of the problem. However, other solvers
such as CPLEX could easily be used.

5 Applications

As has already been noted, the framework that has been de-
veloped thus far is a general one. In what follows, we show
results from the application of this framework to the specific
problems of image recoloring and shadow removal. In the
examples shown, both versions of the color transform give
similar results; we tend to favor the second method since it
is more mathematically elegant. However, at the end of the
section, we provide an example in which the two methods
differ.

5.1 Recoloring

For the problem of recoloring, we seek a mapping from tar-
get to source which aims to impose the color of the source
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Fig. 1 (Color online)
Recoloring example, wherein
the source and target seeds are
taken from the same picture.
Left: the original. Right: the
recolored image

upon the target. In order to achieve this goal, we use Lab
color, and define the color distance as the regular L2 dis-
tance in Lab space:

D2((L1, a1, b1), (L2, a2, b2)) = (L1 − L2)
2 + (a1 − a2)

2

+ (b1 − b2)
2

As noted earlier, we use the more straightforward form of
user interaction here, in which the user selects two small
rectangles, one each from the source and target regions.

Figure 1 shows an example of a recoloring experiment
wherein both the source and target seeds are taken from the
same picture. In this case our task was to paint the left car
that was originally red using the blue color of the right car.
Note that while the colors have been changed to match that
of the right car, the shading and highlights of the left car have
been preserved, as in the original image; see Fig. 2. Figure 3

Fig. 2 Detail from the recoloring example in Fig. 1. Note the way in
which the shading and highlights are preserved

shows a recoloring example wherein the source and target
seeds are taken from two different pictures. In particular, we
wanted to “embed” the blue sky from the left picture into
the middle picture with gray sky. The result is depicted in
the right image. Here again, we preserved the sky texture
from the original lightness channel. Notice that in the above
examples our method yields a natural look and feel in the
reconstructed images.

5.2 Shadow Removal

For the problem of shadow removal, we seek a mapping
from target (shadowed pixels) to source (lit pixels) which
aims to retain the chroma characteristics of the target pixels,
while at the same time inserting the lightness characteristics
of the source pixels. In order to achieve this goal, we use
Lab color, and define the color distance as

D2((L1, a1, b1), (L2, a2, b2)) = (a1 − a2)
2 + (b1 − b2)

2

That is, the color distance depends only on chroma, and not
on lightness. Recall that the color distance is used only in
computing the flow f or parameters β , i.e. in matching tar-
get pixels with source pixels; the transformation rule Φ it-

Fig. 3 (Color online) Recoloring example, wherein the source seed region comes from the left image, and the target seed region is taken from the
original (in the middle). Right: the recolored image
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Fig. 4 Shadow removal examples. Top: the original images. Bottom:
reconstructed images with shadows removed using the proposed ap-
proach

self (see (3) and (9)) operates on the target pixels, and hence
inserts the desired lightness.

Figure 4 depicts two examples of shadow removal. The
top row shows the original images, while the bottom row
shows reconstructed images with shadows removed using
the proposed approach. Notice how the ‘look and feel’ from
the lit areas is accurately reproduced in the shadowed areas.

Figure 5 depicts the source and target seed region clouds
of points in Lab space, from the grass shadow example
(the upper left in Fig. 4). Notice that the location of the
point clouds suggests that in order to preserve a natural
look in the reconstructed image, the color transform needs
to adjust both lightness and chroma values in some non-
trivial way. In areas with homogeneous color the linear ap-
proach might be sufficient. However, in areas with large
color variations, simple approaches fail. To further prove
this point, we compare our method with the linear transfor-
mation method of [13], and with a more sophisticated pyra-
mid based method of [8]. The results are presented in Fig. 6.
The images from left to right are: (1) the original; (2) a lin-
ear transformation that scales the mean and the variance of
the shadowed area according to the ones from the lit area (as
in [13]); (3) a pyramid-based approach from [8]; (4) the pro-
posed approach. Note that, although there are artifacts at the
boundary of the shadowed areas as a result of misdetection
(these are treated in [8] by a separate algorithm), our method
yields the most natural looking image.

Fig. 5 (Color online) The source and target seed region clouds of
points in Lab space, taken from the left picture in Fig. 4. Blue dots
correspond to the target, red dots correspond to the source

Fig. 6 Comparison of the proposed method with competing ap-
proaches. From left to right: (1) the original; (2) the linear transfor-
mation from [13]; (3) the pyramid method from [8]; (4) the proposed
approach

Fig. 7 Shadow removal examples. Left: the optimization in (1). Right:
the optimization in (12)

Finally, we note that in the shadow image, the two color
transforms as given by the optimizations in (1) and (12) dif-
fer somewhat, see Fig. 7. In this example, the colors pro-
vided by the optimization of (1) may be slightly more ac-
curate; on the other hand, close inspection of the images re-
veals that the image of the optimization of (1) is distinctly
noisier. This is a result of the built-in detection scheme of the
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optimization of (12), which leads to smoother results. In this
example, both methods suffer from the same edge artifacts
described above.

6 Conclusions and Future Directions

We have presented a novel approach for the problem of
learning color transforms. Given source and target regions,
the proposed approach uses a modified Transportation Prob-
lem formulation to learn the color properties of the source
region. Then, the color properties of the target region are
transformed so as to closely resemble those of the source
region. The usefulness of the approach is evidenced by
promising results on applications: object recoloring and
shadow removal.

Future work will investigate the use of the technique on
more complex photometric feature spaces, by complement-
ing color with additional dimensions corresponding to a tex-
ture descriptor.
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