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Abstract—A new contour tracking algorithm is presented. Tracking is posed as a matching problem between curves constructed out of

edges in the image, and some shape space describing the class of objects of interest. The main contributions of the paper are to

present an algorithm which solves this problem accurately and efficiently, in a provable manner. In particular, the algorithm’s efficiency

derives from a novel tree-search algorithm through the shape space, which allows for much of the shape space to be explored with

very little effort. This latter property makes the algorithm effective in highly cluttered scenes, as is demonstrated in an experimental

comparison with a condensation tracker.

Index Terms—Contour tracking, tree-search, hybrid optimization, approximation algorithm, compact manifold.
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1 INTRODUCTION

THIS paper is concerned with a new approach to contour
tracking, which is referred to as the manifold tracker. This

approach matches curves in the image constructed from
edge-points, to a shape space, a set of curves which describe
the object of interest. The latter is assumed to be known
prior to the running of the algorithm; it might either be
learned or postulated based on simple assumptions. The
key contributions of this paper are threefold. First, an
algorithm is presented for performing this matching in a
treelike, or coarse-to-fine manner, in such a way that the
entirety of shape space is explored in an efficient manner.
Second, theoretical bounds are given, showing that this
algorithm leads to near-optimal matching. Finally, through
an experimental comparison with the condensation algo-
rithm, it is shown that this ability to efficiently search
through shape space can be critical for actual tracking.

Let us pose the tracking problem in order to clarify some

of the ideas expressed above. Suppose E is the set of curves

which can be constructed from edge-points in the image,

and C is the shape space. (The construction and properties

of these sets will be described in greater detail in

Section 2.1.) Then, a natural problem to solve is

min
e2E;c2C

keÿ ck; ð1Þ

where k � k is the L2 norm. The minimizing argument, e�, is

taken to be the tracked curve. The main thrust of the paper

will to be present an algorithm which will allow for the

above minimization problem to be solved both efficiently

and accurately. Efficiency is achieved through coarse-to-

fine, treelike search through the set C; accuracy is proven

via an upper bound on the amount by which the value of

the solution generated by the algorithm can differ from the

value of the optimal solution.

How can such an algorithm be compared with con-
densation? Condensation is a stochastic algorithm involving
dynamical considerations; by contrast, manifold tracking is
deterministic and does not make use of dynamics. None-
theless, the manifold tracking formulation may be viewed
dynamically. In particular, the stochastic dynamical model
corresponding to the formulation in (1) is of an object with a
uniform probability density over the shape space C. Most
often, the shape space for a particular frame is “centered”
around the previous frame’s estimate; thus, the set C

actually contains a hidden (though simple) dynamical
assumption. In consequence of this fact, the minimization
problem looks quite similar to a condensation problem
(where the observation model is the standard one employed
in [4]).

Bearing this in mind, the main distinction between
condensation and manifold tracking can now be drawn.
Condensation simply fixes the number of samples of C that
it will examine; new samples are generated stochastically
each frame, and are compared with the edges in the image
via the observation model. By contrast, the manifold tracker
is able, by examining the same number of samples as
condensation, to effectively look at many more samples. This
is because of the tree approach. The algorithm uses a
strategy which allows for branches of the tree to be pruned
when it is guaranteed that the true solution cannot lie in
these branches. In practice, this pruning is generally
extremely successful, and allows for many more effective
samples to be examined. As a result, the manifold tracker
allows for much greater accuracy than condensation, using
the same number of operations. As has been noted, this
accuracy can sometimes be extremely important; in highly
cluttered scenes, it can be the difference between maintain-
ing and losing lock. (This assertion will be justified in
Section 7.)

The outline of this paper is as follows: The remainder of
this section reviews the literature on contour tracking.
Section 2 presents a mathematical overview of the problem,
including formal properties of the sets E and C, as well as
challenges inherent in the problem. Section 3 presents the
algorithm itself; this section is somewhat long, as it is
necessary to introduce a certain amount of notation in order
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to describe the algorithm. Section 4 states two theorems
about the algorithm: the first concerns its accuracy in
solving the problem in (1), and the second, its efficiency.
Section 5 proves the two theorems. Section 6 establishes the
complexity of the algorithm. Finally, Section 7 shows the
results of three experimental comparisons with the con-
densation tracker.

1.1 Review of Existing Literature

Contour tracking algorithms present several interesting
applications. These include the surveillance of individuals
[19], [33], [30], [23], [27], [2], biomedical image analysis [25],
[3], [18], [1], [15], [28], audio-visual recognition and
enhancement of degraded speech [9], [14], [26], [22], [13],
[21], [24], [17], [16], and guidance of autonomous vehicles
[34], [31], [32].

There are a number of existing approaches to the
problem of contour tracking. The deformable template
approach [36], [25] involves finding a model parameteriza-
tion for the contours of the object to be tracked, and
matching this representation with successive images in the
video stream in order to detect the contours of interest. The
active contour approach [20], [35], [11], [12] also features an
energy minimization problem, in which the energy is a
functional of the entire curve. Minimizing the energy leads
to smooth curves which are attracted to edges in the image.
A third set of algorithms includes both the Kalman tracker
[5], [7], [10] and its successor, the condensation algorithm
[6]. This approach specifies a stochastic model, consisting of
a dynamical model for the curves, as well as an observation
model describing the effect of noise (due to clutter, etc.) on
the observed edges. Observations and dynamics are
combined to yield the optimal estimation for the curve’s
location. The condensation tracker is quite popular in the
literature, and is therefore the natural choice for comparison
purposes.

2 OUTLINE OF THE PROBLEM

The tracking problem has already been posed, in (1), as the
solution to

min
e2E;c2C

keÿ ck:

The tracked curve is given by

e� ¼ argmin
e2E

min
c2C
keÿ ck

� �
:

An informal description of the sets E and C was given in
Section 1; we shall now give a more formal treatment.

2.1 The Sets E and C

E, the set of curves constructed from edge-points in the
image, is referred to as the observed set, and is generated as
follows: At N equally spaced points along the detected
contour of the previous frame, edge-search takes place in
circular regions, in the image of the current frame. (Note
that many algorithms, for example, [5] use normal search
due to the aperture problem; however, the aperture
problem is truly relevant only in the case of infinitesimal
motions between frames. The problem with using normal
edge-search in real video-sequences is that many edge-
points may be missed, particularly in regions of high
curvature. This is illustrated in Fig. 1.) Each of these points
are denoted sites. In each of these regions, a number of
edge-points are detected; denote the set of edge-points
detected in the nth region by En. An element e 2 E may
then be constructed as follows, see Fig. 2.

1. Take one edge-point en 2 En from each region
n ¼ 1; . . . ; N .

2. Smoothly interpolate the set of edge-points e1; . . . ; eN
into a curve e. The method of interpolation is largely
unimportant, as will be discussed in Section 2.2.

Thus, the set E is in one-to-one correspondence with the set
E � E1 ��EN . Suppose there are M edge-points detected
per site, i.e., jEnj ¼M 8n; then the size of the set of
observed curves is jEj ¼ jEj ¼MN . (In reality, of course,
jEn1
j 6¼ jEn2

j; however, this supposition is made merely to
allow for easily intelligible complexity results.)

The key point is that at each of the sites, multiple edges
may be detected; this is due to the fact that the object being
tracked is not the only object present in the scene. The
presence of this “clutter” is what makes the problem
difficult. The notion of clutter is illustrated in Figs. 5, 6,
and 7, which show images and their corresponding edge-
maps; finding the object (head, ball, and finger) from the
edge-map is not a straightforward task.

We may now turn to C, which is referred to as the shape
space. This set contains all possible curves which may
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Fig. 1. Edge search takes place in circular regions. The dashed curve
represents the previous frame’s contour (from which search emanates),
the solid curve the contour in the current frame. Although the aperture
problem dictates search normal to the dashed contour, it is clear that this
is ineffective when the motion is not infinitesimal. The reason is that in
areas of high curvature, normal search results in the gray point, which is
quite far away from the correct point on the solid contour, whereas with
circular search, the correct (white) point is detected.

Fig. 2. Construction of an observed curve e. The detected contour of the
previous frame is marked in dashed lines. The outlines of objects in the
current frame are marked in solid lines. The object of interest is black,
the gray objects represent clutter. Edge-detection at two sites, A and B,
is shown, the edge-points are shown at the right as white circles (a finite
number, due to pixelization). At site B, edge-points representing both the
object of interest as well as clutter are detected.



describe the object of interest; it encapsulates all of our
knowledge of the object’s geometry. C is generated before
the algorithm is run (possibly by learning from training
curves), and is a subset of curve space. The major
assumptions on the structure of the shape space are the
following:

. C is a finite dimensional compact C1 manifold in
curve space, with dimension K;

. C may be specified parametrically as

C ¼ fcðuÞ : u 2 Ug;

where U is some known, K-dimensional, real,
compact, convex set (for example, U ¼ ½0; 1�K);

. cðuÞ is a C1 mapping from U to C.
These are very reasonable and nonrestrictive assumptions,
and allow for many classes of objects to be captured
mathematically. The formalism also possesses a type of
generality which conveniently allows camera-related trans-
formations to be treated on an equal footing with
noncamera deformations.

A simple example of a shape space is that of a rigid
object which is allowed to translate or rotate by a certain
amount each frame. Suppose that u1 represents translation
in the x-direction, and is constrained by ju1j � �tx; let u2 be
the analogous y variable with similar constraint. Finally,
suppose u3 is the rotation angle, and is subject to ju3j � ��.
Then, we may write the shape space as

C ¼ fcðuÞ ¼ Rðu3Þcf þ ½u1 u2�T : u 2 Ug;

where cf is a template curve (most likely last frame’s contour
estimate), Rðu3Þ is the rotation matrix corresponding to an
angle of u3, and U ¼ ½ÿ�tx;�tx� � ½ÿ�ty;�ty� � ½ÿ��;���.

A more complex example of a shape space is that of an
object which is allowed to transform both rigidly and
nonrigidly. In such a case, the degrees of freedom implicit
in U will be divided between rigid and nonrigid deforma-
tions.

2.2 Other Considerations

Solving the optimization problem in (1) presents several
difficulties. The first is that the problem is of a hybrid, or
mixed continuous-discrete nature. While the set of observed
curves E is discrete, the shape space C is a continuous,
finite-dimensional manifold in curve space. There is no
straightforward method for attacking such problems.
Second, the observed set E, while discrete, is extremely
large. Recall, from Section 2.1, that if M edge-points are
detected at each site, then jEj ¼MN . Typical values for M
and N are 10 and 100, respectively; so jEj ¼ 10100 is a fairly
reasonable expectation. Clearly, exhaustive search over all
of the elements of E is ruled out. The final aspect of the
optimization problem which makes it difficult is that a
global optimum is what is required. Of course, in any
setting, a global optimum is preferable; however, the fact
emerges in the experimental context that there are multiple
local minima in typical cases, and that many of these are not
very close to the global minimum. Thus, explicitly global
methods ought to be developed. Each of these aspects of the
problem would, on its own, present a reasonable challenge;

together, they make the problem quite a difficult one. (Note,
in this context, it is worth pointing out that the optimization
problem is well-defined, i.e., that a minimum exists. This is
due to the fact that U is a compact subset of IRK , and keÿ
cðuÞk is continuous with respect to u; see, for example, [29].)

One complication which has not yet been addressed is
the “correspondence problem.” In forming a distance
between curves such as the one used here, namely
keÿ ck, a natural issue arises: which point on the curve e
corresponds with a given point on curve c? Such a problem
may be solved in a variety of ways; the choice here is to
simply correspond points via their parameter values, where
the parameter is equal to scaled arc-length (and so varies
over the interval ½0; 1�).

This observation allows us to recast the problem slightly.
Using the parametric form for C, the problem may be
rewritten

min
e2E;u2U

keÿ cðuÞk:

However, approximating the square of the L2 norm by its
Riemann sum gives

keÿ cðuÞk2 ¼
Z 1

0

keðsÞ ÿ cðs;uÞk2ds

� 1

N

XN
n¼1

ken ÿ cnðuÞk2;

where en ¼ eðsnÞ; cnðuÞ ¼ cðsn;uÞ, and sn ¼ ðnÿ1Þ
Nÿ1 . Note that

e1; . . . ; eN is simply the set of edge-points, culled from the
sets E1; . . . ; EN , which were interpolated to give e; sampling
e gives back the original points. Denoting e ¼ ðe1; . . . ; eNÞ 2
IR2N and similarly for cðuÞ, then the minimization problem
may be approximated well by

min
e2E;u2U

keÿ cðuÞk; ð2Þ

if N is sufficiently large. Note that the norm in the above is
the now the normal Euclidean norm in IR2N , E ¼
E1 � . . .�EN as before, and cð�Þ : U ! IR2N .

The recast problem, as expressed in (2), is the one which
we shall solve. Like the original problem, this problem is
not obviously amenable to solution, as E is still discrete and
very large, while U is continuous. However, an approach
for assault on the problem may now be outlined.

3 THE ALGORITHM

The goal of the algorithm is to solve the problem

min
e2E;u2U

keÿ cðuÞk

accurately and efficiently. This may be broken down into
two parts: minimization with respect to e and minimization
with respect to u.

3.1 Minimization with Respect to e

If u is held fixed, the minimization with respect to e may
proceed as follows: First, let us introduce the notation:

dðuÞ ¼ min
e2E
keÿ cðuÞk:
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Finding dðuÞ via exhaustive search through E (recall, E is
discrete) requires OðjEjÞ ¼ OðMNÞ operations; this is
obviously infeasible. To reduce this complexity, the follow-
ing observation will prove useful:

d2ðuÞ ¼ min
e2E
keÿ cðuÞk2

¼ min
e12E1;...;eN2EN

XN
n¼1

ken ÿ cnðuÞk2

¼
XN
n¼1

min
en2En

ken ÿ cnðuÞk2:

Each minimization of the form minen2En ken ÿ cnðuÞk
2 may

be solved independently; as a result, finding d2ðuÞ and,
hence, dðuÞ may be achieved in OðMNÞ steps (N minimiza-
tions, each over M values) rather than OðMNÞ steps. This
represents a substantial savings. In fact, this result can be
improved upon. By calculating nearest neighbors using
Voronoi diagrams, it can be shown that each minimization
of the form minen2En ken ÿ cnðuÞk can be performed with
OðlogMÞ complexity, leading to an overall complexity of
OðN logMÞ. (Note, in order to gain this log factor, it is
necessary to incur OðM logMÞ in overhead to calculate the
relevant Voronoi diagram for each site; thus, the total
overhead incurred is OðNM logMÞ. This overhead, how-
ever, is small compared to the overall complexity of the
algorithm; see Section 6 for further details.)

We have shown that if u is fixed, the minimization with
respect to e can be performed efficiently, giving dðuÞ for a
particular u. Now, the tracking problem can be rewritten

min
u2U

dðuÞ:

The goal now is to show that this minimization with
respect to U can also be performed accurately and
efficiently. An obvious approach might be to set
@d=@u ¼ 0. Such a procedure generates a local, rather than
a global minimum; experiments have shown that there are
typically a very large number of such local minima.
However, this consideration may be beside the point.
Solving @d=@u ¼ 0 is numerically infeasible because d is
continuous, but not differentiable. This is due, essentially, to
the fact two u’s close to one another may have different
minimizing e’s. Thus, numerical methods such as gradient
descent will not be applicable.

In order to present a more successful method of attacking
the minimization with respect to u, it is necessary to first
introduce some notation.

3.2 Notation

Definition. V is said to be an "-covercover of the compact set U if
8u 2 U , 9v 2 V such that kvÿ uk � ", and " is the smallest

such value. Alternatively, " ¼ maxu2U minv2V kvÿ uk½ �.
(Note that the maximum is well-defined since U is compact.)

", in the above definition, is a measure of the sampling
density. In particular, " tells us about how well sampled the
poorest-sampled region of U is. This is a useful way of
proceeding, as it does not require that V sample U regularly
or uniformly.

Definition. Given a compact set U , a set V satisfying jV j <1
and V � U , and a point v 2 V , let

Sðv; V ; UÞ ¼ fu 2 U : kvÿ uk � kv0 ÿ uk 8v0 2 V g:

Given sets V and U , the set of sets fSðv; V ; UÞgv2V is almost a

partition of U . The term “almost” is used because the collection

fSðv; V ; UÞgv2V does not quite satisfy all of the requirements

which define a partition. These sets do exhaust U :[
v2V

Sðv; V ; UÞ ¼ U ;

however, they are not quite pairwise disjoint:

Sðv1; V ; UÞ \ Sðv2; V ; UÞ ¼ �Sðv1; V ; UÞ \ �Sðv2; V ; UÞ;

where �S denotes the boundary of the set S. However, thinking

of the collection as a partition helps in understanding what is

to follow.

Definition. An I-depth tree minimization structure (TMS) is

the triple

ðU; fVigIi¼1; f�ið�Þg
I
i¼2Þ;

satisfying:

1. U is a compact set
2. 1) jVij <1, 2) Vi � U , and 3) Vi � Viþ1

3. For any i � 2, f�iðviÿ1Þgviÿ12Viÿ1
is a partition of Vi

such that 1) viÿ1 2 �iðviÿ1Þ and 2) Sðw; Vi; UÞ �
Sðviÿ1; Viÿ1; UÞ 8w 2 �iðviÿ1Þ.

The tree minimization structure is defined to capture the

idea of coarse-to-fine, or treelike search through a dense set.

To aid in understanding the definition and the following

discussion, it may prove useful to refer to Fig. 3. In this

figure are shown the rudiments of a small 2-depth TMS,

which is given as follows:

. U¼½0;1�2,

. V1¼fð16;12Þ;ð12;12Þ;ð56;12Þg,

. V2¼ 1
6;

1
6ð Þ; 1

2;
1
6ð Þ; 5

6;
1
6ð Þ; 1

6;
1
2ð Þ; 1

2;
1
2ð Þ; 5

6;
1
2ð Þ; 1

6;
5
6ð Þ; 1

2;
5
6ð Þ; 5

6;
5
6ð Þf g,

. �2ð16;12Þ¼fð16;16Þ;ð16;12Þ;ð16;56Þg
�2ð12;12Þ¼fð12;16Þ;ð12;12Þ;ð12;56Þg
�2ð56;12Þ¼fð56;16Þ;ð56;12Þ;ð56;56Þg.

Note that for any v1 2 V1, Sðv1; V1; UÞ is the rectangle which

contains v1 (see Fig. 3a); whereas for any v2 2 V2, Sðv2; V2; UÞ
is the square which contains v2 (see Fig. 3b).
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Fig. 3. An example of a TMS. U ¼ ½0; 1�2. The points in (a) belong to V1;

those in (b) belong to V2. Note that V1 � V2. Other properties of this

TMS, as well as an accompanying discussion, are given in the text.



Several aspects of the TMS definition bear commenting
on. The set U through which search is to take place must be
compact; the boundedness ensures that the search method
proposed will indeed converge. The sets fVigIi¼1 contain the
tree structure in them: they are all subsets of U , and are
packed like Babushka dolls one into the next. The idea then,
is to be able to claim that after the ith stage in the algorithm
that we have successfully searched through Vi; as Viÿ1 � Vi,
each stage represents an improvement on the previous
stage. The set of functions f�ið�ÞgIi¼2 contains most of the
action of the definition. The idea is that elements of Vi can
be grouped into jViÿ1j disjoint subsets of Vi; these subsets
are denoted �iðviÿ1Þ (one for each viÿ1 2 Viÿ1). The elements
of �iðviÿ1Þmay be thought of as the “children” of viÿ1. Now,
the set Viÿ1 has the effect of (almost) partitioning U into the
subsets fSðviÿ1; Viÿ1; UÞgviÿ12Viÿ1

; similarly, the set Vi has the
effect of (almost) partitioning U into the subsets
fSðvi; Vi; UÞgvi2Vi . The definition of the TMS requires that
each ðiÿ 1Þth stage subset of U , Sðviÿ1; Viÿ1; UÞ, must itself
be such that it is (almost) partitioned by some collection of
the ith stage subsets of U fSðvi; Vi; UÞgvi2Vi ; and this
collection consists of precisely those subsets corresponding
to the elements vi 2 �iðviÿ1Þ.
Definition. A TMS ðU; fVigIi¼1; f�ið�Þg

I
i¼2Þ is said to be

convex if Sðv; Vi; UÞ is convex for all v 2 Vi; i ¼ 1; ; I.

Convexity is useful in proving several of the lemmata, as
they rely on application of the intermediate value theorem.

Definition. Let HðuÞ ¼ @c
@u , so that HðuÞ 2 IR2N�K . Let �1ðuÞ

be the largest eigenvalue of the K �K matrix HT ðuÞHðuÞ.
Then, for any Y � U , define �ðY Þ ¼ maxu2Y �1ðuÞ½ �1=2. In
particular, let  ¼ �ðUÞ.

The function �ð�Þ gives some idea of the “wiggliness” of the
manifold. Generally speaking, the value �ðY Þ will be high if
there is quite a bit of wiggliness in the manifold in the
neighborhood of U given by Y ; whereas if there is not much
variation, �ðY Þ will tend to be low. In the limit, where the
manifold consists of a single curve, then HðuÞ ¼ 0 8u, so
that �ðY Þ ¼ 0 8Y � U .

3.3 The Heart of the Algorithm: Tree Search
through U

The algorithm, labeled MANIFOLD-TRACK, is now presented
(see Fig. 4).
The arguments of the function are the observed set E and
the TMS ðU; fVigIi¼1; f�ið�Þg

I
i¼2Þ. The function returns an

observed curve ey. Let us now pose the following questions.
1) What is the action of the algorithm? 2) Why does such an
action allow accurate and efficient search through U?

The algorithm’s main action is to “prune the tree”
inherent in the TMS. Note that, if we changed the loop in
line 6 to “for all xi 2 Vi ÿ Viÿ1,” then we would be
calculating dðuÞ for all u 2 VI . (In the first stage, we
calculate dðuÞ 8u 2 V1; in the second stage, dðuÞ
8u 2 V2 ÿ V1; and so on. After I stages, we have calculated
dðuÞ 8u 2 V1 [ ðV2 ÿ V1Þ [ . . . [ ðVI ÿ VIÿ1Þ ¼ VI .) However,
in the actual algorithm, branches of the tree are pruned at
each stage. Examine, for example, the first stage. X1 ¼ V1,
and dðuÞ is calculated 8u 2 X1. How many values of dðuÞ

are calculated in stage 2? The answer is given in the final
line of the pseudocode: any x1 2 X1 such that Dðx1;V1Þ � dy
will be pruned, and none of its descendants will ever be
examined. As a result, the algorithm evaluates dðuÞ at jXI j
different values of u, rather than jVI j values; and jXI j � jVI j.

We may now turn to the second question: why does the
action of MANIFOLD-TRACK allow for accurate and
efficient search through U? Two theorems will be presented
in the next section to address these claims formally.
Theorem 2 addresses the issue of efficiency: it shows that
evaluating dðuÞ 8u 2 XI is equivalent to evaluating dðuÞ
8u 2 VI . In other words,

min
u2XI

dðuÞ ¼ min
u2VI

dðuÞ:

The difference in size between XI and VI is discussed
below. Theorem 1 addresses the issue of accuracy. In
particular, it bounds the difference between the true
optimum,

min
u2U

dðuÞ;

and the value generated by MANIFOLD-TRACK

min
u2VI

dðuÞ ¼ min
u2XI

dðuÞ:

Let us now turn to the issue of the increase in speed
which arises from this algorithm. Brute force exhaustive
search through VI requires jVI j evaluation of dðuÞ; MANI-

FOLD-TRACK requires only jXI j such evaluations. Unfortu-
nately, all that can be formally established (see Theorem 2)
is that jXI j � jVI j. However, the experimental results show
an excellent improvement in speed due to the relative size
differences of XI and VI . In the case of the finger
experiment, a typical frame yields jVI j � 107 versus
jXI j � 103; and in the case of the ball experiment jVI j �
108 versus jXI j � 102. (The full descriptions of the experi-
ments are contained in Section 7.) The speed increase
represents one of the major advantages of the manifold
tracker over condensation. When a manifold tracker per-
forms jXI j operations, it attains the accuracy corresponding
to having performed jVI j operations. In other words, for a
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Fig. 4. Pseudocode for the manifold tracker.



small number of operations, it is effectively as though we
have sampled U very densely. By contrast, when a
condensation tracker performs jXI j operations, it attains
the accuracy corresponding to having performed just
exactly jXI j operations. Thus, it has sampled U much less
densely than the manifold tracker. By sampling the shape
space much more densely with the same number of
operations, the manifold tracker yields a considerably more
accurate match. In highly cluttered scenes, this factor can
mean the difference between maintaining or losing lock. See
Section 7 for more details.

4 TWO THEOREMS

We are now ready to state the theorems which will allow us
to attack the tracking problem, mine2E;u2U keÿ cðuÞk. The
import of the theorems will be discussed after their formal
statements.

Theorem 1. Let V be any "-cover of U . Further, let d� ¼
mine2E;u2U keÿ cðuÞk and l e t dy ¼ minu2U key ÿ cðuÞk,

where ey ¼ argmine2E minv2V keÿ cðvÞkð Þ. If �d ¼ dy ÿ d�,
then

0 � �d � 3 2"2

d�
þ 2 ":

Theorem 1 is concerned with accuracy. It bounds the

difference between the goodness of match using a finite

sampling V � U , and the true optimum. There are two

aspects to this upper bound on �d which are worth

commenting on. First, the " dependence is as we would

expect: as V samples U more and more finely, " decreases,

and the upper bound becomes increasingly small. In

particular, as " becomes very small, the quadratic term

can be ignored, and the dependence of the upper bound on

" is linear. Second, the  dependence is also intuitive; as the

manifold gets more wiggly, the upper bound grows. In

order to mitigate the effect of a large  , U must be sampled

finely enough to lead to a sufficiently small ".
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Theorem 2. Given a convex TMS ðU; fVigIi¼1; f�ið�Þg
I
i¼2Þ, and

an observed set E, let XI be the set generated by MANIFOLD-
TRACK ðE; ðU; fVigIi¼1; f�ið�Þg

I
i¼2ÞÞ. Then

min
e2E;x2XI

keÿ cðxÞk ¼ min
e2E;v2VI

keÿ cðvÞk;

and jXI j � jVI j.

Theorem 2 is concerned with efficiency. In particular, it
presents a more efficient way of solving the problem
mine2E;v2V keÿ cðvÞk, as long as V can be expressed as VI for
an I-depth TMS. To understand the intuition for this result,
it is critical to understand the pruning mechanism by which
branches of Xi are eliminated in generating Xiþ1. It will
prove useful to explain this idea with respect to the simple
TMS illustrated in Fig. 3 and discussed in Section 3.2. At the
first stage, X1 ¼ V1 ¼ fð16 ; 1

2Þ; ð12 ; 1
2Þ; ð56 ; 1

2Þg. Suppose the va-
lues of d at these three u’s are given by dð16 ; 1

2Þ ¼ 10,
dð12 ; 1

2Þ ¼ 15, and dð56 ; 1
2Þ ¼ 50. The last value is considerably

worse than the first two; on what grounds could we prune
the last branch? We would need to be sure that for any u in

the rectangle surrounding ð56 ; 1
2Þ, dðuÞ � 10. If that were the

case, then we would know that no u in this rectangle could
ever be better than u ¼ ð16 ; 1

2Þ. In fact, this is precisely what is
done. Dðxi;ViÞ is a lower bound on the minimal value of
dðuÞ for any u in Sðxi; Vi; UÞ (where the latter is the
aforementioned rectangle in Fig. 3). As a result, if
Dðxi;ViÞ � dy (where dy is the smallest d-value found thus
far), then we can prune the branch emanating from xi.

5 PROOF OF THE THEOREMS

The following section formally establishes the validity of
Theorems 1 and 2. In order to prove the two results, five
lemmata will be stated and proven. In what follows, dyi
denotes the value of dy after i stages of MANIFOLD-TRACK

have been completed.

Lemma 1. Xi � Vi.
Proof. Proceed by induction. Since X1 ¼ V1, the lemma is

satisfied trivially for i ¼ 1. Suppose it is true for i ¼ k:
Xk � Vk. Then,
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Xkþ1 ¼
[

xk2Xk:Dðxk;VkÞ<dyk

�kþ1ðxkÞ

�
[

xk2Xk

�kþ1ðxkÞ

�
[
xk2Vk

�kþ1ðxkÞ

¼ Vkþ1;

where the third line follows from the induction hypoth-
esis, and the fourth line follows from the fact that
f�iðviÿ1Þgviÿ12Viÿ1

is a partition of Vi (Property 3 of the
TMS definition). Note that this also establishes the
second part of Theorem 2: jXI j � jVI j. tu

Definition. vi1 2 Vi1 is the i1th stage ancestor of vi2 2 Vi2 if
1) i1 < i2 and 2) 9 a sequence fvigi2ÿ1

i¼i1þ1 with vi 2 Vi; i ¼
i1 þ 1; . . . ; i2 ÿ 1 and viþ1 2 �iþ1ðviÞ; i ¼ i1; . . . ; i2 ÿ 1.

The ancestor relationship, as defined above, is quite
straightforward. Recall that the TMS embodies a coarse-to-
fine, or treelike structure. The notion of ancestry here is

exactly analogous to ancestry within a tree: we can trace a
direct path downwards through the tree from an ancestor to
its descendant. Here, the “path” is traced by the �i functions.

The following lemma establishes conditions that must

hold if a point v� is such that it belongs to VI , but not to XI .

Lemma 2. v� 2 VI ÿXI ) 9i < I and v�i 2 Vi such that 1) v�i is

the ith stage ancestor of v� and 2) Dðv�i ;ViÞ � d
y
i .

Proof. First, note that the condition v� 2 VI ÿXI only

makes sense because of Lemma 1, which establishes

that XI � VI . Now, proceed by contradiction. Then if

v�1; . . . ; v�Iÿ1 are the first through ðI ÿ 1Þth stage

ancestors of v� (note the fact that there is only one

ancestor at each stage due to the fact that the f�ið�Þg
are bijections) ) Dðv�i ;ViÞ < dyi 8i ¼ 1; . . . ; I ÿ 1. Now,

proceed by induction. v�1 2 X1 since X1 ¼ V1. Suppose

v�i 2 Xi for i > 1. Then, Xiþ1 =
S
xi2Xi:Dðxi;ViÞ<dyi

�iþ1ðxiÞ,
so that �iþ1ðv�i Þ � Xiþ1. But v�iþ1 2 �iþ1ðv�i Þ by the

ancestry definition, so v�iþ1 2 Xiþ1. Thus, by induction,
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v� 2 XI . This is a contradiction, since it was assumed

that v� 2 VI ÿXI . tu
Lemma 3 establishes a condition that is implied by ancestry.

Lemma 3. If vi 2 Vi is the ith stage ancestor of v� 2 VI , then

v� 2 Sðvi; Vi; UÞ.
Proof. If vi 2 Vi is the ith stage ancestor of v� 2 VI , then 9

a sequence viþ1; . . . ; vIÿ1 such that viþ1 2 �iþ1ðviÞ. By

Property (3b) of the TMS definition vkþ1 2 �kþ1ðvkÞ )
Sðvkþ1; Vkþ1; UÞ � Sðvk; Vk; UÞ; repeated application for

k ¼ i; . . . ; I ÿ 1 gives Sðv�; VI ; UÞ � Sðvi; Vi; UÞ. But, v� 2
Sðv�; VI ; UÞ by definition, so v� 2 Sðvi; Vi; UÞ. tu

Lemma 4 is critical both for establishing the upper bound in
Theorem 1, as well as for establishing the lower bound D
used in Theorem 2 in constructing the sets Xi. It is not easy
to give an intuitive statement about the content of Lemma 4;
instead, it is best thought of as a tool for proving the
theorems. Its proof is also somewhat longer than those of
the other lemmata.

Lemma 4. Let Q � U be a convex, compact set and let R be an

"-covering of Q. Let e1; e2 2 E, di ¼ minu2Q kei ÿ cðuÞk,
and ~ddi ¼ minv2R kei ÿ cðvÞk. Then, d2

2 ÿ d2
1 � d2

2 ÿ ~dd2
1 +

3�2ðQÞ"2 + 2d2�ðQÞ".
Proof. Make the following definitions: for i ¼ 1; 2, let

. ui ¼ argminu2Q kei ÿ cðuÞk; di ¼ kei ÿ cðuiÞk

. ~uui ¼ argminv2R kei ÿ cðvÞk; ~ddi ¼ kei ÿ cð~uuiÞk

. ûui ¼ argminv2R kui ÿ vk; d̂di ¼ kei ÿ cðûuiÞk
Then:

d2
2 ÿ d2

1 ¼ ke2 ÿ cðu2Þk2 ÿ ke1 ÿ cðu1Þk2

� ke2 ÿ cðûu2Þk2 þ kcðûu2Þ ÿ cðu2Þk2

ÿ ke1 ÿ cðûu1Þk2 þ kcðûu1Þ ÿ cðu1Þk2

¼ d̂d2
2 ÿ d̂d2

1 þ kcðûu1Þ ÿ cðu1Þk2 þ kcðûu2Þ ÿ cðu2Þk2;

where the inequality in the second line is a double

application of the triangle inequality. Now,

1. d̂d1 � ~dd1 by definition, so ÿd̂d2
1 � ÿ~dd2

1

2. Expanding d̂d2
2 ¼ ke2 ÿ cðûu2Þk2 gives

d̂d2
2 ¼ ke2 ÿ ½cðu2Þ þHð�uu2Þðûu2 ÿ u2Þ�k2;

where HðuÞ ¼ @c
@u and �uu2 2 Q. This is the multi-

variable mean value theorem, which is valid due

to the convexity of Q, see [8]. Thus,

d̂d2
2 ¼ ke2 ÿ cðu2Þk2 þ kHð�uu2Þðûu2 ÿ u2Þk2

þ 2ðe2 ÿ cðu2ÞÞTHð�uu2Þðûu2 ÿ u2Þ:

Now, break down the above expression term-

by-term:

a. ke2 ÿ cðu2Þk2 ¼ d2
2

b. kHð�uu2Þðûu2 ÿ u2Þk2 = ðûu2 ÿ u2ÞT HT ð�uu2Þ Hð�uu2Þ
ðûu2 ÿ u2Þ. Since R is an "-cover of Q, 9v
such that ku2 ÿ vk � ". But, by definition,
ûu2 ¼ argminv2Rku2 ÿ vk; thus, kûu2 ÿ u2k � ".
But then,

ðûu2 ÿ u2ÞTHT ð�uu2ÞHð�uu2Þðûu2 ÿ u2Þ

� �1ð�uu2Þ"2 � max
u2Q

�1ðuÞ
� �

"2 � �2ðQÞ"2;

where �1ð�Þ and �ð�Þ are defined as before.
c. Finally,

ðe2 ÿ cðu2ÞÞTHð�uu2Þðûu2 ÿ u2Þ � jðe2 ÿ cðu2ÞÞT

Hð�uu2Þðûu2 ÿ u2Þj � ke2 ÿ cðu2ÞkkHð�uu2Þðûu2 ÿ u2Þk;

where the latter inequality is due to the

Cauchy-Schwartz inequality. But, ke2 ÿ
cðu2Þk = d2 and from the previous argument

kHð�uu2Þðûu2 ÿ u2Þk � �ðQÞ". Thus, ðe2 ÿ cðu2ÞÞT

Hð�uu2Þðûu2 ÿ u2Þ � d2�ðQÞ".
3. Using the mean value theorem once again

kcðûuiÞ ÿ cðuiÞk2 ¼ kcðuiÞ þHð�uuiÞðûui ÿ uiÞ ÿ cðuiÞk2

¼ kHð�uuiÞðûui ÿ uiÞk2

� �2ðQÞ"2:

Thus,

d2
2 ÿ d2

1 � d2
2 ÿ ~dd2

1 þ 3�2ðQÞ"2 þ 2d2�ðQÞ":
ut

The final lemma establishes the fact that D really is a lower

bound on the minimum in a region of U : if the minimal

value at stage i, dyi , is less than D for a particular region,

then that region can be eliminated.

Lemma 5. Dðvi;ViÞ � dyi ) mine2E keÿ cðuÞk � dyi 8u
2 Sðvi; Vi; UÞ.

Proof. For any e1; e2 2 E, Lemma 4 states that d2
2 ÿ d2

1 � d2
2 -

~dd2
1 þ 3�2ðQÞ"2 þ 2d2�ðQÞ") ÿd2

1 � ÿ ~d1d1
2 + 3�2ðQÞ"2 +

2d2�ðQÞ". But, ~dd2 � d2 ) d2
1 � ~dd2

1 ÿ 3�2ðQÞ"2 ÿ 2~dd2�ðQÞ".
Now, choose

e1 ¼ argmin
e2E

min
u2Q
keÿ cðuÞk

� �
e2 ¼ argmin

e2E
min
v2R
keÿ cðvÞk

� �
:

Then, ~dd2 � ~dd1 (see the definitions of ~ddi). Thus,

d1 � ð~dd2
2 ÿ 3�2ðQÞ"2 ÿ 2~dd2�ðQÞ"Þ1=2:

LetQ ¼ Sðvi; Vi; UÞandR ¼ fvig (i.e., a single element set).

Then, ~dd2 ¼ dðviÞ and d1 ¼ mine2E;u2Sðvi;Vi;UÞ keÿ cðuÞk, so

that the above inequality becomes

min
e2E;u2Sðvi;Vi;UÞ

keÿ cðuÞk � Dðvi;ViÞ:

Finally,

Dðvi;ViÞ � dyi ) min
e2E;u2Sðvi;Vi;UÞ

keÿ cðuÞk � dyi

) min
e2E
keÿ cðuÞk � dyi 8u 2 Sðvi; Vi; UÞ:

ut

We are finally in a position to prove the two theorems.
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Proof of Theorem 1. For any e1; e2 2 E, Lemma 4 states that

d2
2 ÿ d2

1� d2
2 - ~dd2

1 + 3�2ðQÞ"2 + 2d2�ðQÞ". However,d2 � ~dd2 so

that d2
2 - d2

1 � ~dd2
2 - ~dd2

1 þ 3�2ðQÞ "2 þ 2d2�ðQÞ". Now, let Q ¼
U andR ¼ V ; further, let e1 ¼ e� = argmine2E ½minu2U keÿ
cðuÞk� and e2 ¼ ey = argmine2E ½minv2V keÿ cðvÞk�. Then, by

definition, ~dd2 � ~dd1, so that ~dd2
2 - ~dd2

1 � 0 and, thus,

dy2 ÿ d�2 � 3�2ðUÞ"2 þ 2dy�ðUÞ"

dy ÿ d� � 3�2ðUÞ"2 þ 2dy�ðUÞ"
d� þ dy ¼

3�2ðUÞ"2

dy
þ 2�ðUÞ"

1þ d�

dy
:

However, 1=ð1þ d�

dy
Þ � 1 since d� � 0; also, substituting

 ¼ �ðUÞ gives

�d � 3 2"2

dy
þ 2 " � 3 ðUÞ"2

d�
þ 2 ":

ut

Proof of Theorem 2. Proceed by contradiction. Suppose
mine2E;x2XI

keÿ cðxÞk 6¼ mine2E;v2VI keÿ cðvÞk; in parti-
cular, since by Lemma 1 XI � VI , suppose that dyI �
mine2E;x2XI

keÿ cðxÞk > mine2E;v2VI keÿ cðvÞk. Let v� ¼
argminv2VI ðmine2E keÿ cðvÞkÞ; then, the previous sup-
position implies that v� 2 VI ÿXI . By Lemma 2, there
exists an ith stage ancestor v�i 2 Vi of v�, for some
i < I, such that Dðv�i ;ViÞ � d

y
i . But, by Lemma 5, it

follows that mine2E keÿ cðuÞk � dyi 8u 2 Sðv�i ; Vi; UÞ.
Lemma 3 asserts that v� 2 Sðv�i ; Vi; UÞ; thus, in parti-
cular mine2E keÿ cðv�Þk � dyi . Finally, note that dyi � d

y
I ;

thus, mine2E keÿ cðv�Þk � dyI . This is a contradiction. tu

6 COMPLEXITY

Let us consider the complexity of MANIFOLD-TRACK. As
has been noted in Section 3.1, calculating dðuÞ for a single u
is an OðN logMÞ procedure, for which an overhead of
OðNM logMÞ is incurred. dðuÞ is evaluated for all u 2 XI ;
thus, the total complexity is

OðN jXI j logM þNM logMÞ ¼ OðN jXI j logMÞ;

as typically, M � jXI j.

It is more informative to express the complexity in

terms of �d, the proximity of the actual solution to the

true optimum, rather than jXI j. To do so, use a

dimensional argument. Let V be an "-covering of U ; then,

using something akin to sphere-packing, it is clear that

volðUÞ � jV j"K , where K ¼ dimðUÞ ¼ dimðCÞ. That is,

jV j / "ÿK . Now, assuming that �d is fairly small, it can

be shown that the upper bound on �d from Theorem 1 is

proportional to ". (Proof: From Theorem 1, the upper

bound is given by �d ¼ a"2 þ b", where the constants a

and b are given in Theorem 1. In this case, we can solve

to show that " ¼ b
2a ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a�d

b2

q
ÿ 1Þ. If �d is small, then

Taylor Expansion gives that " � �d=b, so that " ¼ Oð�dÞ.)
Finally, note that jXI j � jVI j / "ÿK / �dÿK . Thus, the

algorithm has complexity

OðN�dÿK logMÞ:

Based on experiments, it is assumed that in many
cases, jXI j will be much smaller than jVI j, although as yet
no formal result to illustrate this has been achieved; all
that is known is that jXI j � jVI j. (For positive experi-
mental results concerning the relative sizes of jXI j and
jVI j, see Section 7.) In terms of the more relevant
parameter �d, it is hoped that a result may be proven
to show that the complexity using the algorithm
described in Theorem 2 is of the form OðN�dÿ� logMÞ,
where � < K; the difference between � and K will
depend heavily on the behavior of the manifold C.

7 RESULTS AND CONCLUSIONS

Results from tracking three sequences are shown in Figs. 5,
6, and 7. In each case, the manifold tracker was tested
against a condensation tracker. Statistics about the perfor-
mance of the two trackers is summarized in Table 1. In
order to make the comparison between the two trackers fair,
the number of samples of U examined by the manifold
tracker (jXI j) is not allowed to exceed the number of
samples examined by the condensation tracker (�). Also,
note that both of the algorithms were implemented on a
300 MHz Pentium II machine in uncompiled MATLAB.
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In the first sequence, an individual’s head is tracked as
he walks through mildly cluttered scene. The shape space C
is taken to be a small set of translations, rotations, and
scalings of a fixed head template (the template is culled
from a training image); this set is centered about the
previous frame’s estimate. The dynamical model for the
condensation tracker is simply a uniform distribution over
this set. Both trackers successfully follow the head for the
entire length of the sequence, although the condensation
tracker is generally further from the truth; see, for example,
frames 26 and 93 in Fig. 5. The reason for this is the fact that
condensation samples the shape space considerably less
densely than does the manifold tracker; whereas
� ¼ 2; 000 samples are used in condensation, jVI j � 107

samples are effectively examined by the manifold tracker,
despite the fact that, in reality, jXI j � 1; 000 samples are
actually looked at. It is therefore natural that the condensa-
tion estimate would be less refined.

In the second sequence, a ball is tracked through a scene

with a considerable amount of clutter (generated by the

newspaper lying underneath the ball); the degree of clutter

is illustrated by the edge-map in Fig. 6. The shape space C

is similar to that described for the head sequence (with the

exceptions that the template is known a priori to be a circle,

and as such no rotations are necessary), as is the dynamical

model. The manifold tracker successfully tracks all

183 frames, while the condensation tracker loses lock

permanently after frame 69. Here, the denser sampling

provided by the MANIFOLD-TRACK algorithm is absolutely

critical: it is the difference between maintaining and losing

lock. The more cluttered a scene is, the more important

dense sampling is. In this experiment, there is sufficient

clutter that several spurious, ball-like arrangements of edge-

points exist; while these arrangements are not quite as ball-

like as the true ball, they are close enough to fool a tracker

which does not sample C sufficiently densely. In this case,

the efficacy of tree-search is even more striking: while the

manifold tracker actually looks at about 10 times fewer

samples than condensation (� ¼ 2; 000 while jXI j � 100), it

effectively looks at 100,000 times more samples (jVI j � 108).

Finally, the last sequence shows a finger being tracked as

it flexes and translates. In this case, the shape space C is

learned from a training sequence (using PCA-type meth-

ods). Furthermore, a second-order linear dynamical model

which lives in C is trained on the sequence, using the

techniques described in [4]. In this case, condensation yields

odd results, as can be seen in frames 46 and 49 of Fig. 7.

During the short sequence of frames 44-50, the finger is

stationary. However, the condensation tracker chooses a

flexed finger for its estimate, as this is what its dynamical

model tells it is probable. Thus, this tracker has the bizarre

property that, in this sequence, it is unable to track a

stationary object! The manifold tracker has no such

problem, as it searches over a larger space of finger

configurations (given that it has no dynamical model).

Once again, it is able to search through this larger set due to

the efficient tree search justified in Theorem 2.
On the negative side of the ledger, we should note that

condensation outperforms the manifold tracker by a factor

of about 2 in terms of actual speed; this is primarily due to

some of the more complex operations (such as finding of

eigenvalues) need for manifold tracking. Whether or not the

manifold tracker can make up this difference through more

careful implementation is an open question. Another

advantage of condensation over manifold tracking is the

ability to handle missing edges. An underlying assumption

of the manifold tracker assumes that the set of edges at each

site is nonempty: En 6¼ ;. One way of dealing with empty

sites is to simply ignore them in the calculation; in other

words, whereas previously dðuÞ was calculated as

dðuÞ ¼
XN
n¼1

min
en2En

ken ÿ cnðuÞk2;

it is now emended to be

dðuÞ ¼
XJ
j¼1

min
enj2Enj

kenj ÿ cnjðuÞk
2;

where fnjgJj¼1 are the nonempty sites. Such a method will

work well when there are only a small number of empty

sites. However, in the case of major occlusions, it is not at all

clear that it will succeed. In particular, due to its reliance on

dynamics, condensation is able to (in some cases) deal with

almost complete occlusions; it is unlikely that the manifold

tracker, in its present form, would be able to do so.

There are several directions for future research. First, an

attempt will be made to theoretically characterize the gains

in efficiency due to tree-search. Second, the algorithm will

be modified to more properly deal with occlusions. Third,

the algorithm will be extended to take account of intensity

information (in addition to edge information). Fourth, the

problem will be adapted to the tracking of surfaces in range

images. Finally, more attention will be paid to the

implementation of the algorithm, in order to test its true

speed.
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