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In conventional microscopy, the spatial resolution of an image is bounded by Abbe’s diffraction limit, corresponding
to approximately half the optical wavelength. Over the last decade, super resolution methods have revolutionized
biological imaging, enabling the observation of cellular structures at the nanoscale. These include the popular localization
microscopy methods, like photo-activated localization microscopy ((F)PALM) [1, 2] and stochastic optical reconstruction
microscopy (STORM) [3]. However, despite the great advancement, existing localization microscopy methods are still
limited in their acquisition and post-processing speeds, and in their ability to extract 3D and multicolor properties of the
imaged samples.

1 Deep localization microscopy

Localization microscopy relies on acquiring a sequence of diffraction-limited images of blinking fluorophores (Fig. 1), so
that each frame contains a sparse set of point-spread functions (PSFs). Using e.g. Gaussian fitting, the emitters can be
localized with very high precision, and by combining the recovered emitter positions from all frames, a super-resolved
image is produced with resolution typically an order of magnitude better than the diffraction limit (down to tens of
nanometers).
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Fig. 1. Super resolution microscopy via single-molecule localization. By acquiring a sequence of diffraction-limited im-
ages and super-localizing single emitters via Gaussian fitting, the resolution of an optical microscope can be improved
by a factor of ∼ 10.

Most existing reconstruction methods for localization microscopy require that the emitters in each frame be sufficiently
sparse, which leads to a long acquisition time (seconds to minutes), and limits the ability to capture fast dynamics
of sub-wavelength processes within live cells. Various algorithms have been developed to handle overlapping PSFs.
While successful localization of densely-spaced emitters has been demonstrated, all existing methods suffer from two
fundamental drawbacks: data-processing time and sample-dependent parameter tuning.

Recently we demonstrated precise, fast, parameter-free, super-resolution image reconstruction by harnessing Deep-
Learning [4] (highlighted also in Nature methods [5]). In this work, we employed a fully convolutional encoder-decoder
architecture for super-resolution image reconstruction from dense fields of overlapping emitters. Our method, dubbed
Deep-STORM, does not explicitly localize emitters. Instead, it directly creates a super-resolved image from the raw data.
To train the network we generated simulated training examples with matching experimental conditions, namely, camera
specifications, PSF model, approximate signal-to-noise ratio (SNR), and the expected emitter density.
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Fig. 2. Reconstruction of experimentally measured microtubules. (a) Sum of the acquisition stack (361 dense frames).
Scale bar is 2 µm. (b) Reconstruction by CEL0 [6]. (c) Reconstruction by Deep-STORM. (d)-(e) Magnified views of
two selected regions. Scale bars are 0.5 µm. (f) The width projection of the highlighted yellow region. The attained
FWHM (black triangles) for CEL0 was 61 nm and 67 nm for Deep-STORM. The black line shows the diffraction-limited
projection.

We validated Deep-STORM on super-resolution data, and benchmarked against a high-performance multi-emitter
fitting algorithm (CEL0 [6]). Specifically, we tested the result of Deep-STORM on experimental high-density data obtained
from Sage et al. [7], training solely on simulated data with similar experimental conditions - namely, SNR and emitter
density. Deep-STORM resolves nearby lines and fine structures, and produces more continuous shapes compared to the
output of CEL0 (Fig. 2). Deep-STORM not only yields image reconstruction results that are comparable to or better than
leading algorithms, but also does so ∼ 1 − 3 orders of magnitude faster.

Next, motivated by the success in solving the 2D high-density emitter-fitting problem, we extended our approach to
3D [8]. Various methods proposed ways to enable the imaging of three-dimensional (3D) objects, a prominent one being
point spread function (PSF) engineering for microscopic particle localization [9]. In PSF engineering, the PSF is modified
by additional optical elements, e.g. a phase mask, inserted into the detection path of a standard microscope (Fig. 3 (a)).
This enables designing PSFs whose shapes change distinctively as a function of depth, thus allowing to recover the axial
position of each emitter from a single 2D image.

As in 2D localization microscopy, here as well the number of emitters per frame (and thereby their density) determines
the temporal resolution of the method. However, overlapping emitters pose an even more severe algorithmic challenge
in the 3D case since encoding the axial position of an emitter introduces additional complexity into the PSF shape
and increases its size, especially for large axial ranges (>3 µm) using the Tetrapod PSF [9, 10] (Fig. 3 (b)). To solve the
high-density localization problem in 3D, we trained a CNN that receives a 2D image of overlapping Tetrapod PSFs
spanning an axial range of 4 µm, and outputs a 3D vacancy grid which is post-processed to compile a list of localizations
(Fig. 3 (c)). We compared the CNN performance to the leading state-of-the-art methods and found it to be superior by a
wide margin [8].

2 Deep optics design

The Tetrapod PSF was optimized for the single emitter case, designed by maximizing the Fisher Information of the
system [9, 10]. However, when considering the multiple-emitter case, an intriguing question arises: What is the optimal
PSF for high density 3D localization over a large axial range? To answer this question we need to rethink the design
metric; extending the Fisher Information criterion [9] to account for emitter density is not-trivial, and while it is intuitive
that a smaller-footprint PSF would be preferable for dense emitters, it is not clear how to mathematically balance this
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Fig. 3. Optical setup for 3D localization microscopy. (a) The light emitted from a fluorescent microscopic particle is
collected by the objective and focused through the tube lens into an image at the intermediate image-plane. This plane
is extended using a 4f system with an SLM placed at the Fourier plane in between the 2 4f lenses. (b) The phase mask
implemented on the SLM dictates the PSF’s axial profile measured on the final image plane. (c) After training, our
CNN receives a 2D low resolution image of overlapping Tetrapod PSFs and outputs a 3D high-resolution volume
which is translated to a list of 3D localizations. Blue empty spheres denote simulated GT positions along the surface of
an ellipsoid. Red spheres denote CNN detections. Scale bar is 3 µm.

demand with the requirement for high localization precision per emitter.
Our PSF-design logic is based on the following: since we have already established that a CNN yields superior

reconstruction for high-density 3D localization, we are interested in a PSF (encoder) that would be optimally localized by a
CNN (decoder). Therefore, we adopt a co-design approach (Fig. 4 (a)). To jointly optimize the PSF and the localization
CNN, we introduce a differentiable physical simulation layer, which is parametrized by a phase mask that dictates the
microscope’s PSF. This layer encodes 3D point sources to their respective low-resolution 2D image. Then, this image is
fed to the localization CNN which decodes it and recovers the underlying 3D source positions. During training, the net is
presented with simulated point sources at random locations and, using the difference between the CNN recovery and the
simulated 3D positions, we optimize both the phase mask and the localization CNN parameters in an end-to-end fashion.
The learned PSF (Fig. 4 (b)) has a small lateral footprint, which is critical for minimizing overlaps at high densities.
Moreover, the learned phase mask twists in a spiral trajectory causing the PSF to rapidly rotate throughout the axial
range, a trait that was previously shown to be valuable for encoding depth [11].

Finally, of particular importance for biological imaging is real-time, correlative information between multiple species
in a sample. Typically, this is achieved by attaching spectrally-distinctive fluorophores to molecules of interest, thus
necessitating multicolor imaging. Using an RGB camera is not practical for low-signal applications where photons are
precious. Therefore, we explored a similar co-design approach in the context of multicolor localization microscopy [12].
For this application, we learned a phase mask in order to optimize the net’s ability to distinguish the colors of single
emitters from grayscale images and demonstrated that it is possible to come close to perfect color classification from a
grayscale image, even in challenging SNR regimes [12].
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Fig. 4. PSF Learning. a Simulated 3D emitter positions are fed to the image formation model to simulate their low res-
olution CCD image (Encoding). Next, this image is fed to a CNN that tries to recover the simulated emitter positions
(Decoding). The difference between the simulated positions and the positions recovered by the CNN is used to jointly
optimize the phase mask at the Fourier plane, and the recovery CNN parameters. (b) Learned phase mask (left), with
a simulation of the learned PSF as function of the emitter axial position (right). (c) Jaccard index and lateral \axial
RMSE comparison between two CNNs with the same architecture, one trained to recover 3D positions from 2D images
of Tetrapod PSF (black), and the second trained to recover 3D positions from 2D images of the learned PSF (orange).
Scale bar is 3 µm.
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